دانشجو نمی تواند نان بخرد!!!!!!!!!!!!

با افزایش قیمت نان اعلام شد :

فروش ویژه نان :  ربع نان - نیم نان  - تمام نان طرح قدیم (خاشخاشی ) - تمام نان طرح جدید(برشته) 

تصوير سرچشمه جواني كيهاني

تصوير سرچشمه جواني كيهاني
تلسکوپ هابل آنچه دانشمندان آن را سرچشمه حقیقی جوانی، از نوع کیهانی می نامند را در تصاویر جدیدی که به ثبت رسانده آشکار کرده است.
مربوط به : نجوم و اخترفیزیک
ادامه نوشته

اسرار فيزيك كوانتوم

اسرار فيزيك كوانتوم
وقتی گالیله در سال ۱۶۱۰ یافته های خود را در تائید نظر کوپرنیک مبنی بر ثابت نبودن زمین و گردش آن به دور خورشید منتشر کرد باعث شد تا وی از سوی کلیسا مورد بازجویی و تفتیش عقاید قرار گیرد. این نظریه مخالف نص کتاب مقدس بود و از سویی با نظریات ارسطو که کلیسا حامی آن بود همخوانی نداشت.
مربوط به : فیزیک کوانتوم و فیزیک جدید
ادامه نوشته

نقض قانون ماكس پلانك در فواصل كوتاه

نقض قانون ماكس پلانك در فواصل كوتاه
فیزیکدانان MIT با نقض قانون "ماکس پلانک" در مورد فواصل کوتاه نشان دادند که انتقال گرما در فواصل بسیار کوتاه کمتر از 10 نانومتر می تواند هزار برابر شدیدتر از پیش بینی های قانون این دانشمند آلمانی باشد.
مربوط به : کوانتوم و فیزیک جدید
ادامه نوشته

قوانین فیزیک و محدودیت های آنها

همه چیزها یی که در این جا وجود دارند از خود نظم، هماهنگی،ثبات و جاودانگی بروز می دهند. ظاهرا جایی برای عوامل تاریخی یا تصادفی وجود ندارد. با این همه ... به موجب قوانین نیوتن مدار زمین باید یک بیضی باشد نه چیزی بیش از این.....


ادامه نوشته

هفت شگفتی عظیم فیزیک در جهان

ما به جایی رسیده‌ایم که که بدون حل کردن برخی از مشکلات و مسایل فیزیک، نمی‌توانیم در مورد حقایق و پدیده‌های جالب و شگفت‌انگیز دیگر فیزیکی، اطلاعات بیشتری کسب کنیم. برای درک مفاهیمی مثل خاستگاه و بنیاد جهان هستی، سرنوشت نهایی سیاهچاله‌های فضایی یا امکان سفر در زمان، نیاز داریم که بدانیم جهان هستی چگونه ادامه‌ی حیات می‌دهد...
مربوط به : کوانتوم و فیزیک جدید
ادامه نوشته

انواع بمب هسته ای

انواع بمب هاى هسته اى
ایزوتوپ معمول اورانیوم (اورانیوم 238) براى ساخت سلاح اتمى مناسب نیست. چرا که با شلیک نوترونى به هسته این ایزوتوپ، احتمال به دام افتادن نوترون و تشکیل اورانیوم 239 از احتمال شکافت هسته اى بسیار بیشتر است. درحالى که در اورانیوم 235 امکان شکافت هسته اى بیشتر است.             ( کوانتوم و فیزیک جدید)
 

 

ادامه نوشته

غنی سازی اورانیوم

 

مقدمه

سنگ معدن اورانیوم موجود در طبیعت از دو ایزوتوپ 235U به مقدار 0.7 درصد و 238U ‏به مقدار 3.99 درصد تشکیل شده است. سنگ معدن را ابتدا در اسید حل کرده و ‏بعد از تخلیص فلز ، اورانیوم را بصورت ترکیب با اتم فلوئور (9F ) و بصورت مولکول ‏اورانیوم هگزا فلوراید تبدیل می‌کنند که به حالت گازی است. سرعت متوسط ‏مولکولهای گازی با جرم مولکولی گاز نسبت عکس دارد.

شکافت هسته اورانیوم

 

ادامه نوشته

تاریخچه فیزیک

همان طورکه متقدمین ...

 

تاریخچه فیزیک

ماقبل تاریخ
همانطور که متقدمین از روی تجربه و امتحان به خواص باطنی پاره‌ای از اجسام بی‌پرده و از ترکیب مواد به وسایل مختلف (تشویه، تکلیس، تقطیر و غیره) مواد شیمیائی بدست آورده و برای علمای شیمی جدید مایه‌ای درست کرده‌اند، همینطور هم تحقیق در خواص فیزیکی اجسام از مسائل تازه نیست و از قدیم الایام انسان درصدد کشف آنها بوده و از توجه به تغییرات و خواص ظاهری به بعضی اصول و قواعد فیزیکی پی برده و فیزیک جدید در حقیقت مولود توجهات و تحقیقات متقدمین می‌باشد.
مثلاً‌ تالس که قدیمی‌ترین و معروفترین حکمای سبعه است و تقریباً در شش قرن قبل از میلاد می‌زیسته محقق ساخت که از مالش کهربا خاصیتی در آن به ظهور می‌رسد که اجسام سبک را جذب می‌کند، همچنین فیثاغورث حکیم و ریاضی‌دان معروف یونانی و شاگردهایش به پاره‌ای مسائل و قضایای صوت پی برده بودند. (این دانشمند اول کسی است که زمین را متحرک می‌دانست).
ارسطو نیز در چهار قرن قبل از میلاد تئوریهای دقیقی در باب کائنات الجو (از قبیل جرثقیل، منجنق، میزان‌الغلظة و پیچ (پیچ ارشمیدس
Vis sans pin) را اختراع نموده.
البته موضوع محاصرة سیراکوز را به توسط رومیان و سه سال مقاومت اهالی آن شهر را به وسیله نقشه‌های ارشمیدس اغلب در تاریخ دیده‌ایم. گویند یکی از وسایلی که ارشمیدس برای دفاع از وطن خود بکار می‌برد این بود که به وسیله آئینه‌های مقعر اشعه آفتاب را جمع کرده به جانب کشتیهای دشمن منعکس می‌ساخت وبدین‌وسیله آنها را آتش می‌زد.
همچنین قانونی را که راجع به «اجسام مرتمسة در مایعات» وضع کرده از قوانینی است که به وسیلة اتفاق غریبی به کشف آن نائل شده است:
هیرن پادشاه سیراکوز به زرگری دستور داده بود که تاجی از طلای خالص برای او بسازد، زرگر در ساختن تاجی تقلب کرده مقداری نقره با آن ممزوج کرده و نزد هیرن بود. اتفاقاً پادشاه به زرگر ظنین شد و برای اطمینان خاطر خود ارشمیدس را بطلبید و او را مأمور تحقیق خلوص یا عدم خلوص تاج نمود. ارشمیدس مدتها در این باب فکر می‌کرد ولی راه‌حلی به نظرش نمی‌رسید تا روزی که به حمام رفته بود در خزینه آب احساس کرد که دست‌ها و پاهایش سبکتر به نظرش می‌آید.
این مسئله کوچک روزنة امیدی برای او پیدا و بدین‌وسیله به کشف حقیقت بزرگی نایل گردید. معروف است که در اثر حالت غیرطبیعی که از اکتشاف مزبور برای ارشمیدس دست داده بود با همان حال برهنگی از حمام خارج و دوان دوان به جانب خانه سلطان روان گردید و فریاد می‌زد:
Eureka! Eureka یعنی یافتم، یافتم . در واقع هم وسیله کشف تقلب زرگر را از روی کشف قانون کلی «تعیین وزن خالص مخصوص اجسام نسبت به آب» پیدا کرده بود.
قانونی را که ارشمیدس به وسیلة فوق موفق به کشف آن گردیده موسوم به
D’Archimede Principle و به قرار ذیل می‌باشد:
بر کلیه اجسام مرتمسه در سیال (مایعات و گازها) فشاری از تحت به فوق وارد می‌آید که مقدار آن مساوی است با وزن سیال تغییر مکان یافته.
بالاخره بطلیموس (قرن دوم میلادی) منجم و ریاضی‌دان یونانی نیز تحقیقات عمیقی راجع به نور کرده و کتاب نفیسی در این مبحث از خود باقی گذارده است.
پس از بطلمیوس تحقیقات فیزیکی تا قرن ۱۳ میلادی متوقف شد و حتی می‌توان گفت که رو به انحطاط گذارد. فقط عده‌ای از قبیل جابر و محمدبن موسی در این رشته زحماتی کشیده و اطلاعات قابل توجهی کسب کرده بودند.
● قرون وسطی
اما تحصیل فیزیک در کشورهای غربی از قرون سیزدهم شروع می‌شود علمای معروف این علم در این قرن عبارتند از: راجر بیکن و آلبرت کبیر.
▪ در این عصر دو اختراع مهم بعمل آمد:
یکی آئینه‌های صیقلی و دیگری عینک (
Salvino Degli-Armati)
در قرن چهاردهم استعمال ))قطب نما تعمیم یافت. قرن پانزدهم راجع به ««فیزیک تقریباً چیز مهمی ندارد.
بالعکس در قرن شانزدهم مخصوصاً مباحث ثقل و نور و مغناطیس رو به کمال رفته‌اند. در این زمان فراسکاتور (ایتالیائی) قانون ترکیب قوه، را وضع کرد،‌
Gardon ریاضیات را با فیزیک مربوط ساخت، Moralyeus عمل زجاجیه چشم را به واسطة آثار عدسیها به مورد تجربه گذارد.
جانسن ))میکروسکپ را اختراع «۱۵۹۰» و روبرت ««نورمن انگلیسی میل مغناطیسی را تعیین نمود. بالاخره ژیلبرت اولین تجارت علمی الکتریکی و مغناطیسی را در کتاب معروف خود (
Magnete)تدوین و منتشر ساخت.
● فیزیک جدید
پایة فیزیک جدید در قرن هفدهم به توسط گالیله گذارده می‌شود؛ این دانشمند شهیر ایتالیائی متولد شهر پیزا رفته بود اتفاقاً چشمش به قندیلی می‌افتد که به سقف آویزان بود و آهسته نوسان می‌کرد چون خوب متوجه شد دید: نوسانات که رفته رفته از وسعت خود می‌کاستند زمانشان پیوسته تغییر ناپذیر می‌ماند _ بدین طریق قانون متحدالزمان بودن «
Lsoc hronisme » نوسانات کوچک پاندول را کشف و بعد هم بلافاصله مورد استعمال آن برای تنظیم ساعتهای دیواری از نظرش خطور کرد.
دماسنج، ترازوی آبی و دوربین نجومی از اختراعات و اصول ««دینامیک جدید و عده‌ای از قوانین نقل از کشفیات اومی‌باشد.گالیله نه تنها فیزیکدان«« معروفی بوده بلکه در ««ریاضیات و نجوم مقامی بس ارجمند داشته. این دانشمند درسال ۱۶۰۹ اولین دوربین نجومی را در شهر ونیز بنا نهاد و به وسیلة آن حرکت ماه را بدور محور خود مشاهده کرد.
رصدهای دقیق گالیله او را به سلسله هیئت کپرنیک هدایت نمود و به عکس نظر به قدما که زمین را مرکز عالم سماوی می‌دانستند ثابت کرد که مرکز عالم شمسی آفتاب است نه زمین. بیان این نظریه در آن زمان در ایتالیا که به منزلة کفر و زندقه محسوب می‌شد و بخصوص دربار رم با این نظر بشدت مخالفت کرده و گالیله را وادار کردند سوگند یاد کند دیگر به اظهار چنین نظریه‌ای زبان نگشاید‌، گالیله نیز خواهی نخواهی قبول کرد ولی در سال (۱۶۳۲) در مراجعت به فلورانس کتابی تدوین و در آن جمیع ادله و براهین خود را در موضوع سلسلة هیئت مزبور بیان نمود.
باری دانشمند ایتالیائی برای صرف اظهار حقیقت اواخر عمر را بطور نیمه اسیر و شدیداً تحت نظر انگیزیسیون می‌زیسته تا اینکه بالاخره در سال (۱۶۴۲) زندگانی را بدرود و خود را از شر دشمنان علم و حقیقت آسوده ساخت.
اگر چه مخترع دماسنج گالیله می‌باشد ولی نقطه ذوب یخ را برای صفردماسنج (
Hooke) قرار داد و ثبوت نقطه جوش آن را Halley تعیین کرد. بالاخره دماسنجی که صعود منظم درجات حرارت را نشان دهد به توسط Renaldini ساخته شد.
دکارت قوانین انکسار و تئوری رنگین کمان را بنا نهاد. توریچلی میزان الهوا را ساخت که پس از او پاسکال آن را برای اندازه‌گیری ارتفاعات بکار برد. تحقیقات و تجسساتی که پاسکال در تعادل مایعات کرد او را به اختراع منگنه آبی راهنما شد.
در همین دوره آکادمی دل سیمانتو
Academie Del cimento که لئوپلد دومدیسی در فلورانس تشکیل داده بود کمک زیادی به پیشرفت شاخه های گوناگون فیزیک نمود.
چندی بعد در فرانسه نیروی جاذبه را اندازه گرفتند و مقدار (
G) تصحیح شد (۸۱/۹متر) مجدداً اسحاق نیوتن بعد از شنیدن این خبر به خیال اول خود رجوع نموده و آن را موضوع حساب قرارداد، گویند در اواخر همین که دید نتیجه موافق پیش‌بینی اوست از فرط شعف نتوانسته محاسبه را به اتمام رساند.
اسحاق نیوتن به واسطه استدلال رفته رفته به کشف این قانون کلی نایل شد: هر دو ذره مادی یکدیگر را به نسبت معکوس مجذور فاصله و مقدار جرمشان جذب می‌کنند.
خلاصه این عالم شهیر به واسطه اکتشافات و اختراعات خود یک روح جدید به فیزیک (بخصوص مبحث نور) بخشید. حلقه‌های رنگین (
Anneaux colrees) و تجزیه نور بالون اصلیه آن از اکتشافات و تلسکوپ آئینه‌دار از اختراعات او است.
رمر (
Ronmer) سرعت نور را اندازه گرفت و ماریت (فرانسوی) و بویل (Boyle) (انگلیسی) قانون فشار گاز را وضع کردند.در درجه حرارت ثابت حجم هر بخار یا گاز با فشار ی که بر آن وارد می‌آید نسبت معکوس دارد .
بویل ماشین تخلیه هوا را که
Otto de Cueriche قاضی عدلیه شهر ماگدبورگ اختراع کرده بود تکمیل نمود. بالاخره اولین طرح ماشین بخار به توسط Papin ریخته شد.
اگر چه قرن هجدهم برای فیزیک بدرخشندگی قرن هفدهم نمی‌باشد ولی به هرحال آن را قرن بی‌ثمری هم نمی‌توان نامید.
در این قرن صوت بر روی مبانی محکم قرار گرفت: قانون تارهای مرتعشه را سوور طرح‌ریزی، و تایلر(
Taylor) و (Bevnoulli) و Euler و (D’Alambtrt) تکمیل کردند.
دوفه جذب و دفع‌های الکتریکی را تحت تحقیق درآورد. دوفه می‌گوید:
”من در تجربیات خود قانونی یافتم که غالب مشکلات را حل می‌کند و تا درجه‌ای راه تاریک را روشن می‌سازد.
اجسام الکتریزه هر چیز غیر الکتریک را جذب می‌کنند و چون الکتریزه شدند دفع می‌نمایند و تا طلائی را بدوا لوله بلوری الکتریزه جذب می‌کند ولی فوراً دفع می‌نماید و تا هنگامی که ورقه طلا مجاور جسم دیگری نشود تا الکتریسته آن را خارج شود جذب نمی‌گردد.”
علاوه بر این دفع الکتریسته را به دو بخش نموده و می‌گوید:
اتفاق به من قانون عمومی‌تر و مهمتری آموخت و در الکتریسته تغییری کامل داد و آن این است که الکتریسته دو نوع است که من یکی را شیشه‌ای و دیگری را سقزی می‌نامم. خواص دو نوع الکتریسته مزبور این است که دو الکتریسته هم جنس یکدیگر را دفع و دو الکتریسته مختلف‌ همدیگر را جذب می‌نمایند. بلور‌، سنگ، سنگهای بزرگ، پشم و بسیاری از اجسام دیگر جزء نوع اول و کهربا، سقزها، ابریشم، نخ، کاغذ و غیره، جزء نوع دوم می‌باشند.
بعد قوانین و اصول کولن در خصوص جذب و دفع باعث شد که الکتریسته تحت محاسبات دقیق درآید.
گری ثابت کرد که بدن انسان را می‌توان الکتریزه نموده و دوفه در تجربه‌ای که همه تماشاچیان را مبهوت ساخت از بدن انسان جرقه درآورد. در سقف اطاق خود چند ریسمان ابریشمی می‌آویخت و در زیر آن چیزی گهواره مانند بسته در آن می‌خوابید خود را با میله کلفت بلوری الکتریزه می‌نمود و چون کسی دست به طرف او دراز می‌کرد از بدنش جرقه می‌جست اولین دفعه‌ای که دوفه این تجربه را نمود موجب تعجب بسیار شاگرد خود آبه نله که بعدها عالم مشهوری شد گردید. آبه نله می‌گوید «هیچوقت تعجبی را که از رویت جهش جرقه از بدن انسان برایم دست داد فراموش نمی‌کنم». خلاصه کارهای دوفه به تجسسات بی‌فایده علما خاتمه داد و از آن بعد الکتریسته وارد تاریخ تازه‌ای گردید.
Muschenbroech بطری لید را اختراع کرد (۱۷۴۳) و فرانکل شباهت تخلیه الکتریکی و صاعقه را نشان داد و در نتیجه برق گیر را برای حفظ ساختمان از برق اختراع نمود. تجربه گالوانی، ولتا را به اختراع پیل (۱۸۰۰) یعنی اساس الکتریسته جاری هدایت کرد و آن به قرار ذیل است:
ابتدا ستون فقرات ناحیه قطنی قورباغه‌ای را به دو قسمت کرده فوراً قسمت تحتانی را پوست می‌کنند بعد مابین دو عصب قطنی را که در طرفین ستون فقرات مثل رشته‌های سفیدی به نظر می‌آیند مفتولی از مس داخل می‌کنند سر دیگر مفتول وصل به مفتول دیگرست که از روی ساخته شده، هر وقت سر مفتول مسی را به اعصاب قطنی وسر مفتول رویی را به عضلات یکی از پای قورباغه وصل کنیم پاهای حیوان تا شده و تکان می‌خورد و هر دفعه که این دو مفتول را مجاور آن دو عضو کنیم این اثر تجدید می‌شود: این دو فلز «مس و روی) که به شکل قوسی ساخته شده‌اند برای جریان الکتریسته با بدن قورباغه تشکیل مدار می‌دهد.
باید دانست که مبحث مغناطیس الکتریک نتیجه اکتشافات دو عالم سابق الذکر یعنی ارستد و آمپر می‌باشد و همانطور که نام این دو دانشمند در یک موقع و یک عصر و یک مبحث برده شده همانطور هم جهات تشبیه در بسیاری از مباحث بین ایشان موجود بود: اولاً هر دو معاصر بوده تولدشان دو سال و وفاتشان یک سال با یکدیگر فرق داشته‌، ثانیاً آمپر فقط یکسال بیش از ارستد عمر کرده (عمر آمپر ۷۵ و عمر ارتسد ۷۴ سال است). ثالثاً هر دو در ابتدای تحصیل در نهایت فقر و پریشانی بسر می‌بردند و به خرج و کفالت اولیای دیگر و معلمین خود تحصیل را تکمیل کردند. رابعاً ارتسد در عنفوان جوانی اشعاری می‌سرود که چندان بی‌اهمیت نبوده آمپر نیز قطعات نظمی گفته که بعضی از آنها را آراگو و دیگران ضبط کرده‌اند. پنجم آمپر فیلسوف و حکیم نیز بوده و ارستد هم فلسفه و حکمت را نزد بزرگترین فلاسفه یعنی کانت آموخته و از این علم نیز بهره کافی داشت، ششم در باقی علوم نیز با یکدیگر شباهت داشته باشند.
فاراده (
Faraday) ابتدا الکتریسیته را بنا نهاد، اصول گالوانوپلاستی را ژاکبی اهل پتروگرادواسپنسر اهل لندن وضع الکینگتن و روالتس را مطلاکاری بکار بردند.
گالوانوپلاستی صنعتی است که توسط تجزیه الکتریکی فلزات را در قالب مخصوص رسوب و مورق می‌کنند به نحوی که به جدار آن نچسبد و خود تشکیل شکل درونی قالب را بدهد. چنانکه سابقاً ذکر شد آمپر عمرش وفا نکرد و بعد از او به نتیجه رسیدند چنانکه آراگو قانون او را تکمیل کرده و تعمیم داد و گوس یکی از بزرگترین ستاره شناسان و ریاضی دانان آلمان اختراع تلگراف را تکمیل کرده و بعدها طبیعی‌دان آمریکائی موسوم به مرس الفبائی برای تلگراف درست کرده دستگاه آن را ساخت و دستگاه تلگرافی وی که به تلگراف مرس موسوم است هنوز در کلیه کشورهای معمول و مرسوم می‌باشد. آراگو علاوه بر تکمیل قوانین آمپر و ارستد اکتشافات و تحقیقات علمی دیگر هم کرده است منجم««له ثابت کرد که در عالم خلاء وجود ندارد بلکه در تمام فضای لایتناهی جسم سیال بسیار رقیقی موسوم به ««اتر موجود است که در همه جا حتی در خلل و فرج اجسام جای دارد و نیز اثبات نمود که اجسام نورانی دارای ارتعاشات بسیار سریعی هستند و اثر این ارتعاشات را با سرعت زیادی به ما منتقل می‌کند. پس از تکمیل تلگراف طولی نکشید که به واسطه تجربیات هرتز آلمانی در خصوص انتشار امواج الکتریکی باب جدیدی برای تلگراف بی‌سیم باز شد چنانکه پس از او مارکنی ایتالیائی و برانلی فرانسوی تجربیات او را تعقیب و بالاخره تلگراف بی‌سیم را عمل کردند. در اینجا بی‌مناسبت نیست که بطور اختصار شرحی از تاریخ تلگراف بیان شود. در قدیم الایام بین چینی‌ها و یونانی‌ها و رومی‌ها مرسوم بود که در اوقات جنگ برای اخبار یا استخبار از وضعیات دستجات قشون خود و یا دادن دستورات سوق الجیشی در بالای برجهای مخصوص ویا قلل تپسه‌ها و کوه‌ها آتش روشن می‌کردند و به وسیله حرکت دادن مشعل‌های بزرگ و علامات و اشاراتی که قبلاً قرارداد کرده بودند مطالب خود را به طرف مقابل می‌فهماندند. مردم گل مرسومشان این بود که از افراد خود به فواصل متساوی پست می‌گذارند و این مأموران کنایات در مورد قرارداد را فریاد کنان به پست‌ها می‌رساندند.
پس از هجوم و استیلای وحشیان و تا مدتی بعداز آن یعنی تا قرن شانزدهم این نوع علائم اخباری از بین رفت. از قرن شانزدهم به بعد مجدداً این ترتیب مخابره شروع شد و تا قرن هجدهم ادامه داشت در این قرن کلدشاپ مهندس و فیزیکدان فرانسوی یک دستگاه تلگراف هوائی اختراع کرد و اولین دفعه مجمع کنوانسیون آن را برای پیغام و اطلاع خبر فتح کننده اتریشی‌ها به کار برد. بالاخره پس از آنکه دامنه الکتریسته وسعت یافت، واسطة انتقال اخبار جریان الکتریسیته شد. اولین دستگاه تلگرافی دنیا در سال ۱۷۷۴م به توسط لزاژ فرانسوی در ژنو ساخته شد. هر دستگاه تلگراف (باسیم) شامل چهار قسمت است: اولاً یک منبع الکتریکی از قبیل پیل یا آکومولاتر، ثانیاً یک دستگاه ارسالی خبر که بتوان منبع الکتریک را به وسیله مفتول‌های فلزی (سیم) به پست مقابل مربوط ساخت بطوری که تلگرافچی بتواند با اراده خود جریان را قطع و وصل کند. ثالثاً‌ سیم، واسطة ارتباط و هادی جریان الکتریسیته دستگاه ارسال است به دستگاه ضبط. چهارمً‌ دستگاهی برای ضبط خبر که به توسط آلات مخصوص علامت و رموز را در روی نواری از کاغذ ثبت کند. سیمهای تلگرافی بر سه نوعند: هوائی،‌ زیرزمینی و زیرآبی سیمهای هوائی _ زیرزمینی و زیرآبی سیمهای هوائی _ چون مقاومت سیمهای مسی چندان زیاد نیست و ممکن است زود بزود گسیخته شود لهذا سیمهای هوائی را با آلیاژهای مسی می‌سازند این مفتولها به واسطه مقره‌های چینی به تیرهای فلزی یا چوبی ثابت و در هوا نگاه داشته شده است. سیمهای زیرزمینی _ مرکب است از چند مفتول مسی بهم پیچیده که از یک ورقه ضخیم گوتاپیرکا پوشیده و روی آنرا یک ورقه سرب کشیده‌اند. سیم‌های زیرزمینی و زیرآبی _ این نوع سیمها معمولاً مرکبند از یک دسته هفت‌تائی مفتول مسی متصل به هم که روی آن را با یک ورقه ضخیم از جسم عایقی پوشانده‌اند. این ورقه عایق از سیمهای فولادی مستور است و دور این مفتولها نوار مارپیچی شکل علفی (از جنس شاهدانه) الوده به قطران پیچیده‌اند

نگاهى به تاريخ و شاخه هاى گوناگون فيزيك

بازي بزرگان (نگاهى به تاريخ و شاخه هاى گوناگون فيزيك)

ریچارد فین من، فیزیکدان آمریکایى زمانى علم را با این گفته تشریح کرده بود که: «طبیعت یک بازى بزرگ شطرنج است که آن را خدایان بازى مى کنند و ما افتخار آن را داشتیم که آن بازى را نگاه کنیم ...

 


بازي بزرگان 

نگاهى به تاريخ و شاخه هاى گوناگون فيزيك

 
در قرن هفدهم نيوتن با كارهايى كه بر روى نور انجام داد به اين نتيجه رسيد كه نور از ذره هاى كوچك تشكيل شده است. دانشمندان ديگر معتقد بودند كه ماهيت نور موج است. اما نفوذ نيوتن سبب شد كه نظريه او براى مدت ۲۰۰ سال مورد قبول با شد.سرانجام در سال ۱۸۶۵ جيمز ماكسول فيزيكدان اسكاتلندى همه پديده هاى الكتريكى و مغناطيسى را با تئورى خود تشريح و تفسير كرد. او گفت كه نور فقط بخشى از امواج الكترومغناطيسى است. ماكسول وجود امواج راديويى، كه موج، فروسرخ فرابنفش و اشعه ايكس و گاما كه بعد از آن كشف شد را پيش بينى كرد.تا اواخر سال ۱۸۰۰ ميلادى به نظر مى رسيد كه فيزيك ماموريت تشريح هر آن چيزى كه بايستى نسبت به رفتارمان و انرژى دانسته شود، شناخته است. به هر حال چيزى فراتر از حقيقت نيست. در اوايل دهه ۱۹۰۰ ميلادى فيزيك نيوتنى با دو نظريه نسبيت و كوانتوم مورد ضربه شديد قرار گرفت.در سال ۱۹۰۵ يك كارمند اداره ثبت  آلمانى به نام آلبرت اينشتين مقاله اى نوشت كه در آن نظر كاملاً جديدى در مورد مكان و زمان مطرح كرد. او پيشنهاد كرد كه فضا و زمان نسبى هستند بدين معنى كه اندازه گيرى آنها به چارچوب مرجع (محورهاى مختصات ناظر) بستگى دارد. ده سال بعد اينشتين تئورى نسبيت عمومى خود را ارائه داد و با رياضيات نشان داد كه فضا و زمان نسبى هستند. اين تئورى همچنين جانشين تئورى جاذبه نيوتنى شد و به كمك نظريه انحناى فضا حركت اجرام فضايى را تشريح كرد. نظريه نسبيت اينشتين آثار ديگر نجومى را كه نظريه نيوتن نمى توانست آنها را توجيه كند پيش بينى كرد.اينشتين در مورد انرژى كه ابتدا ماكس پلانك فيزيكدان آلمانى در سال ۱۹۰۰ نظر خود را اعلام كرده بود تفصيل و شرح استادانه اى ارائه داد. پلانك به اين نتيجه رسيد كه انواع شكل هاى انرژى از بسته هاى كوچكى تشكيل شده اند كه او آنها را كوانتوم ناميد. اينشتين نظريه پلانك را در مورد نور به كار برد و ذره انرژى نور را فوتون ناميد. با اين مفهوم اثر فوتوالكتريك را تشريح كرد. در پديده فوتوالكتريك تابش پرتوهاى فرابنفش به سطح فلز سبب خروج دانه هاى الكتريسيته به  نام الكترون مى شوند. اين امر نيز ماهيت دوگانه نور را آشكار كرد و نشان داد كه نور بعضى وقت ها مانند موج و بعضى وقت ها مانند ذره عمل مى كند نيلز بور فيزيكدان دانماركى نظريه كوانتومى را براى اتم به كار برد. او شرح داد كه در هر اتم الكترون ها مى توانند فقط سطح هاى مشخصى از انرژى را داشته باشند. هنگامى كه يك الكترون از سطح انرژى بيشتر به سطح انرژى كمتر انتقال يابد تفاوت انرژى در اثر اين پرش كوانتومى به صورت فوتون  نور تابش مى شود.در سال ۱۹۲۳ لويى ويكتور دوبروى فيزيكدان فرانسوى اعلام كرد كه نور ماهيت دوگانه موج - ذره را دارد، الكترون ها نيز چنين وضعى دارند. هنگامى كه نظر دوبروى مورد بررسى قرار گرفت مفهوم فيزيك كوانتومى و مكانيك كوانتومى روشن و موجب درك و فهم اساس ماده و حركت شد.آزمايش هايى كه بر روى هسته  اتم ها صورت گرفت سبب شد كه تحقيقات فيزيك در قرن بيستم بر هسته متمركز شود. وسيله اى كه براى اين تحقيقات به كار رفت شتاب دهنده ذرات بود كه وسيله اى با انرژى بسيار زياد است و مى تواند يك باريكه اى از ذره هاى اتمى الكتريسيته دار را به وجود آورد. فيزيكدانان از اين ذره ها براى بمباران اتم ها و مطالعه در چگونگى شكسته شدن آنها استفاده مى كنند.مطالعاتى كه با انرژى زياد صورت گرفت سبب كشف دو ذره جديد زيراتمى شد. جريان مطالعات اين پيشنهاد را در پى داشت كه انواع ذره هاى بنيادى از چند ذره اصلى به نام كوارك ساخته شده اند.در اواخر قرن بيستم اطلاعاتى كه دانشمندان از ذره هاى بنيادى و اثر متقابل آنها به دست آوردند تئورى جديد وحدت نيروها را مطرح كردند. اين تئورى تركيبى از چهار تئورى مربوط به نيروهاى گرانشى، الكترومغناطيسى، هسته هاى قوى و هسته هاى ضعيف بود كه به صورت تئورى واحد همه نيروها را دربرمى گيرد. پژوهش هايى كه در فيزيك ذرات بنيادى صورت گرفته منجر به پيدايش تئورى جديد جهان شناسى شده است. در اين تئورى منشاء ساز و كار و تحولات جهان بزرگ بررسى مى شود. مثلاً در دهه ۱۹۲۰ ادوين هابل اخترشناس آمريكايى و ديگران كشف كردند كه جهان منبسط و گسترده مى شود. اين موضوع تحت عنوان تئورى بينگ بنگ بيان شده و مطرح مى كند كه جهان در اثر يك انفجار بزرگ كيهانى آغاز شده است.
• شاخه هاى فيزيك
فيزيك را به طور سنتى به دو شاخه فيزيك كلاسيك و فيزيك جديد تقسيم مى كنند. فيزيك كلاسيك شامل مكانيك نيوتنى، ترمو ديناميك، اكوستيك، اپتيك و الكترومغناطيس است.
• فيزيك كلاسيك
مكانيك نيوتنى شاخه اى از علم فيزيك است كه براساس قوانين حركت كه در كارهاى آيزاك نيوتن است پايه گذارى شده است. امروزه اين شاخه فيزيك داراى حوزه وسيعى از رياضيات عالى است كه فيزيكدانان آن را براى طراحى قطارهاى جديد، اتومبيل ها، هواپيماها و زيردريايى ها و موشك هاى دوربرد و فضاپيماها به كار مى برند.ترموديناميك شاخه ديگرى از علم فيزيك است كه در موضوع انتقال گرما، تبديل گرما به كار مفيد در اثر جابه جايى هاى فيزيكى يا واكنش هاى شيميايى مطالعه مى كند. فيزيكدانان در اين حوزه ممكن است در موضوع نيمه رساناها كه گرما را از پرتوهاى خورشيد مى گيرند و آن را به الكتريسيته تبديل مى كنند كار كنند.
اكوستيك مطالعه  علمى بر امواج صوتى و كنترل صوت است. فيزيكدانان در اين قسمت در طيف وسيعى كار مى كنند. آنها از لرزش هاى كوچك زمين تا نوسان هاى پرسامد فراصوتى كه در پزشكى براى تشخيص بيمارى ها كاربرد دارند مورد مطالعه قرار مى دهند. مهندسى صدا كه براساس فيزيك صوت قرار دارد در طراحى تئاتر و تهيه موزيك به كار مى رود. اپتيك به انواع پديده هاى نورى مربوط مى شود. نور هندسى با پرتو هايى كه به خط راست منتشر مى شوند (كه پرتو نور ناميده مى شوند) مربوط مى شود. پديده هاى بازتابش، شكست و تشكيل تصوير در ابزار هاى نور مانند آينه و عدسى در نور هندسى بحث مى شود. اپتيك فيزيك به ماهيت موجى نور و پديده هاى تداخل، تفرق، قطبش كه در ابزار هاى دقيق نورى مانند ميكروسكوپ، دوربين عكاسى و فيلتر هاى نورى موثرند، مى پردازد.الكترومغناطيس شاخه اى از علم فيزيك است كه از نيرو هاى ميان مواد مغناطيسى، نيرو هاى ميان جريان هاى الكتريكى و روابط ميان اين نيرو ها بحث و مطالعه مى كند. فيزيكدانان در اين حوزه از علم با مغناطيس هاى الكتريكى كه درماشين هاى صنعتى مانند موتور ها و ژنراتور ها و نيز ابزار ها علمى مانند شتاب دهنده ها و ابررسانا ها به كار مى روند سروكار دارند.
• فيزيك جديد
فيزيك جديد بر موضوعاتى مانند مكانيك كوانتومى، فيزيك هسته و ذرات بنيادى و فيزيك پلاسما متمركز است.
مكانيك كوانتومى به بررسى ساختمان و طرز كار اتم ها و ذره هاى بنيادى با توجه به اين نظر كه همه انرژى ها به صورت كوانتومى هستند مى پردازد. كوانتوم مكانيك علم بررسى سلول هاى فوتوالكتريك، باترى هاى خورشيدى، پرتو فلورسنت، ليزر و اسپكتروسكوپ است. اسپكتروسكوپ دستگاهى است كه براى تشخيص عناصر از يكديگر از راه نورى كه در اثر تحريك شدن تاثير مى كنند به كار مى رود.
فيزيك هسته اى و ذره هاى بنيادى در مورد ويژگى هاى هسته و ذره هاى درون آن كه هستك ناميده مى شوند بحث و مطالعه مى كند. ابزار آزمايش فيزيكدانان هسته اى و ذره هاى بنيادى شتاب دهنده هاى بسيار قوى ذرات و آشكار ساز ها هستند. فيزيكدانان هسته اى انرژى را كه از راه شكافت هسته اى و پيوند هسته اى به وجود مى آيد را كنترل مى كنند و آن را براى توليد انرژى هسته  اى و سلاح  هاى هسته اى به كار مى برند. آنها در بخش پزشكى هسته اى هم كار مى كنند تا روش هاى استفاده از مواد راديواكتيو را براى تشخيص معالجه بيمارى ها بيابند.
فيزيك پلاسما مربوط به بررسى آثار و اعمال پلاسما است. پلاسما كه حالت چهارم ماده نيز ناميده مى شود شكلى از ماده است كه به صورت گاز يونيزه يون و در آن يون ها و الكترون ها به صورت آزاد حركت مى كنند. در بيرون از اتمسفر كره زمين بيش از ۹۹ درصد موادى كه در جهان قابل مشاهده هستند به صورت پلاسما موجودند. در روى زمين پلاسما فقط در چند جا مانند درون حباب هاى فلورسنت وجود دارد. امروزه در آزمايشگاه ها از طريق يونيزه كردن گاز ها در اثر جريان الكتريكى پلاسما توليد مى كنند. اين پلاسماى مصنوعى را كه اهميت بسيار دارد در صنايع نيمه رسانا ها به كار مى برند.
• فيزيك و ديگر علوم
همه شاخه هاى فيزيك در يك يا چند موضوع با علوم ديگر مانند زيست شناسى، شيمى، زمين شناسى و اختر شناسى پيوند يافته و مبحث هاى جديد زيست فيزيك، شيمى فيزيك، زمين فيزيك و اختر فيزيك را به وجود آورده  اند.
زيست  فيزيكدانان درباره فيزيك موجودات زنده بحث مى كنند. به ويژه آنها مفاهيم و ابزار هاى فيزيك را براى حل مسائل زيست شناسى مانند ساختمان مولكول هاى مركب يا ماهيت پالس هاى الكتريكى در مغز، در عصب ها، در ماهيچه ها و ديگر اندام ها به كار مى برند. مثلاً در قرن بيستم پراش پرتو ايكس نقش عمده اى در كشف ساختمان و طرز كار مولكول هاى مهم، پروتئين ها و دى ان اى بر عهده داشت.
زمين فيزيكدان ها از علم فيزيك براى مطالعه زمين و سياره هاى همسايه آن استفاده كردند. روش آنها شامل مطالعه بر پوسته، هسته، اقيانوس ها و اتمسفر زمين و سيارات ديگر منظومه شمسى بود. زمين فيزيك خود شامل رشته هايى مانند زمين پيمايى يا مساحى (ژئودوزى)، لرزه شناسى، مغناطيس زمين است. در زمين پيمايى شكل زمين و ميدان گرانش آن بررسى مى شود. در لرزه شناسى لرزه هايى كه در اثر جابه جايى هاى درون زمين يا انفجار هاى هسته اى زيرزمينى به وجود مى آيد مطالعه مى شود. موضوع مغناطيس زمين در رابطه با قطب ها و ميدان مغناطيسى زمين است.شيمى فيزيكدان ها به مطالعه ساختمان ماده و تغييرات انرژى كه در اثر واكنش هاى شيميايى يا تغيير حالت هاى ماده (مانند وقتى گاز به مايع تبديل مى شود) به وجود مى آيد، مى پردازند.
كيهان شناسان در موضوع مبدا، ساختار و تحولات جهان مطالعه مى كنند. فيزيكدانان در اين حوزه به شناسايى چگونگى سازوكارى جهان و تشخيص ماهيت ماده و انرژى مى پردازند. همانطورى كه مكانيك كوانتومى در مورد هسته و ذره هاى اتمى به بررسى مى پردازد. رابطه تنگاتنگى ميان مكانيك كوانتومى و اخترفيزيك وجود دارد كه در تشريح ساختار و طرز كار ستارگان و ديگر اجرام فضايى به كار مى رود. اختر فيزيكدانان در تلاشند تا ويژگى هاى هر چيزى كه در جهان بزرگ مشاهده مى كنند با واژه هاى دما، فشار چگالى و تركيب هاى شيميايى نشان دهند.

 

 

ريچارد فين من، فيزيكدان آمريكايى زمانى علم را با اين گفته تشريح كرده بود كه: «طبيعت يك بازى بزرگ شطرنج است كه آن را خدايان بازى مى كنند و ما افتخار آن را داشتيم كه آن بازى را نگاه كنيم. قوانين بازى چيزى است كه ما آن را فيزيك اساسى و مبادى مى ناميم و هدف ما درك و فهم اين قوانين است.» بر طبق گفته فين  من، فيزيك از گذشته هاى دور به عنوان علمى شناخته شده است كه مى كوشد تا «همه چيز» را تشريح و تفسير كند. فيزيك، مطالعه بر ماده و انرژى و كاوش دريافتن قوانينى است كه رفتار آنها را مشخص مى كند. در حالى كه شيميدانان عنصرها و تركيب ها را مطالعه مى كنند فيزيكدانان به مطالعه نيروهايى مى پردازند كه عنصرها را به وجود مى آورند و با هم تركيب و يا از يكديگر جدا مى كنند. در حالى كه اخترشناسان اجرام فضايى را مطالعه مى كنند، فيزيكدانان نيروهايى را مطالعه مى كنند كه اين اجرام را اينگونه شكل بخشيده اند و قوانينى را بررسى مى كنند كه بر حركت آنها در فضا حاكم هستند.
فيزيكدان ها مى خواهند بدانند كه چه چيزى سبب مى شود كه اتم ها به يكديگر پيوند يافته و كهكشان ها از هم جدا هستند. براى درك همين مطالب است كه نيروهايى مانند گرانش و پديده هايى چون حركت، مغناطيس، الكتريسيته و انرژى هسته اى را آزمايش و بررسى مى كنند.
بسيارى از بزرگترين فيزيكدانان جهان، همچون فين من تحقيقات علمى را دنبال مى كنند و به تدريس آنها مى پردازند. در حالى كه گروه ديگرى از فيزيكدانان در صنايع، طراحى شبكه هاى ارتباطى برتر، نيروگاه هاى با بازده بالا، ساختمان هاى امن تر و كارخانه هاى اتومبيل سازى، كشتى سازى و هواپيماسازى بسيار پيشرفته اى كه مقاومت هوا بر آن بسيار ناچيز است، كار مى كنند. بعضى از فيزيكدانان هم با پژوهشگران امور پزشكى همكارى مى كنند تا راه هاى جديدى را براى كاوش در تن آدمى بيابند. ممكن است روزى فيزيكدانان راه هاى عملى را براى پرواز اتومبيل و قطار در هوا به دست آورند و انرژى نامحدود، ارزان و پاك را در اختيار همگان قرار دهند. اين موارد فقط شمارى از فرصت هاى بى شمار عملى است كه راه آن براى فيزيكدانان امروزى باز شده است.
• تاريخ فيزيك
ريشه هاى فيزيك را به عنوان يك علم حداقل از حدود ۲۶۰۰ سال پيش مى توان رديابى كرد. در آن زمان بود كه فيثاغورث، فيلسوف يونانى هماهنگى ميان صوت تارها را در آلت موسيقى كشف كرد و آن را به صورت يك رابطه رياضى نشان داد. همين موضوع سبب شد كه فيثاغورث به دنبال يافتن قانون هاى ساده رياضى باشد كه پديده هاى طبيعى را به درستى تشريح نمايند، قانون هايى كه حركت يك ذره معلق در فضا تا كل سازوكار جهان را نشان دهند.
در حدود ۴۰۰ سال پيش از ميلاد مسيح افلاطون و ارسطو نظر فيثاغورث را گسترش دادند. آنها نظمى را در گردش دايره اى ستارگان ديدند اما حركت سيارات در خلاف جهت ستارگان و دور و نزديك شدن آنها فكرشان را مغشوش كرد تا آن كه در سال ۱۵۴۳ ميلادى نيكلاى كپرنيك دانشمند لهستانى در فرضيه خود، با قراردادن خورشيد به جاى زمين هماهنگى فيزيكى جهان را عرضه كرد. در دهه اول ۱۶۰۰ ميلادى يوهان كپلر دانشمند آلمانى دريافت كه مسير سيارات دايره نبوده بلكه به صورت بيضى است. او به مدد رصدها و مطالعات خود قانون هايى را به دست داد كه سرعت  مدار و زمان  گردش هر سياره را به طور دقيق بيان مى كرد.در حدود همان سال ها گاليله فيزيكدان ايتاليايى و رنه دكارت رياضيدان فرانسوى موضوع حركت را مورد مطالعه قرار دادند. آنها جدا از هم دريافتند كه اگر جسمى در حركت باشد مسير آن خط راست است و با سرعت ثابت جابه جا مى شود مگر آن كه چيزى بر آن اثر كند يا نيرويى بر آن وارد شود. اين فكر بنياد قوانين حركت بود كه به وسيله آيزاك نيوتن فيزيكدان انگليسى به وجود آمد.نيوتن در سال ۱۶۸۷ كتاب «اصول رياضى فلسفه طبيعى» را نوشت. اين كتاب يكى از متون بسيار مهم علمى است كه تاكنون نوشته شده و راهنماى بسيارى از كارهاى علمى است كه مورد پذيرش قرار گرفته است. در اين كتاب نيوتن سه قانون حركت را مورد بحث قرار داده است: قانون اينرسى، قانون شتاب ثابت و قانون عمل و عكس العمل. در اين كتاب «قانون گرانش جهانى» نيز ارائه شده است. اين قانون براساس مشاهدات كپلر كشف و به صورت رياضى فرمول بندى شد و نشان مى دهد كه هر دو جسم با نيرويى كه با حاصل ضرب جرم هاى آن نسبت مستقيم با مجذور فاصله آنها نسبت عكس  دارد يكديگر را جذب مى كنند.نظرات نيوتن كه شامل مطالعه حركت اجسام و نيروهايى كه بر آنها اثر مى كند، است اساس علم مكانيك شد و به نوبه خود مكانيك اساس فيزيك جديد شد.
در همان زمان كه نخستين فيزيكدانان به مطالعه حركت و قوانين آن مشغول بودند در جست وجوى بررسى ماهيت و رفتارهاى ماده در جهان نيز بودند. مثلاً در سال ۱۶۰۰ ميلادى روبرت بويل مشخص كرد كه اگرگازى را گرم كنيم، اتم ها جنبش بيشترى خواهند يافت و سبب مى شوند كه دما و فشار گاز افزايش يابد. تشريح رفتار گازها براساس حركت اتم ها اكنون به تئورى سينتيك گازها معروف است. اين موضوع يكى از كاربردهاى مهم و جالب مكانيك نيوتن در حوزه اتم  ها _ نه ستارگان بود.در تئورى سينتيك بويل اين ايده وجود داشت كه گرما شكلى از انرژى است. شكل هاى ديگر انرژى از قبيل انرژى الكتريكى و انرژى شيميايى نيز به زودى شناخته شدند. بعدها مشخص شد كه اين شكل هاى گوناگون انرژى مى توانند به يكديگر تبديل شوند. اما انرژى خود به خود به وجود نمى آيد و نابود هم نمى شود. اين موضوع يعنى _ پايستگى انرژى يكى از پايه هاى اساسى علم فيزيك شد.در طول سال هاى ۱۷۰۰ ميلادى بسيارى از دانشمندان از جمله بنجامين فرانكلين سياستمدار، نويسنده و مخترع آمريكايى و الساندرو ولتا بسيارى از ويژگى هاى الكتريسيته و قوانين حاكم بر آن را بررسى و كشف كردند. آنها وجود بارهاى مثبت و منفى الكتريسيته را كشف كردند و دريافتند كه فلزات رساناى خوبى براى الكتريسيته هستند. يعنى بارها الكتريكى به سهولت از ميان آنها مى گذرد.
اين اكتشافات سبب شد كه فيزيكدانان و شيميدانان دريابند كه خود اتم از بارهاى مثبت و منفى الكتريكى تشكيل شده است و واكنش هاى شيميايى را به كمك جذب و دفع الكتريكى بين اتم ها مى توان تشريح و تفسير كرد.
معماهاى نور و خصوصيات آن در طول تاريخ نيز فيزيكدانان را مجذوب خود كرده است. نمونه اى از آينه فلزى كه مصرى ها در حدود چهار هزار سال پيش به كار مى برده اند در دره رود نيل از زير خاك بيرون آورده اند. دانشمندان يونان باستان مانند فيثاغورث، دموكريتوس، افلاطون و ارسطو درباره ماهيت نور به بحث پرداخته اند. اقليدس در حدود سه قرن پيش از ميلاد مسيح از انتشار نور به خط راست و برابرى زاويه تابش با زاويه بازتابش سخن رانده است. در مجموعه پرسش و پاسخ بين ابوريحان بيرونى و اين سينا به چنين پرسشى از سوى ابوريحان برمى خوريم كه «چگونه است كه ظرف شيشه اى مدور پر از آب كه در مسير نور آفتاب قرار گيرد اشياى مجاور خود را مى سوزاند اما اگر از آب تهى باشد، چنين نمى كند؟»۱
خواجه نصرالدين طوسى در كتاب تجريدالكلام مى گويد: «به نظر برخى از دانشمندان نور از ذرات خردى ساخته شده كه از منبع نور جدا شده و به اجسام گيرنده نور مى رسند. قطب الدين شيرازى در كتاب نهايه الادراك از رنگين كمان و چگونگى ديدن اجسام بحث مى كند، كمال الدين فارسى در كتاب تنفيع المناظر درباره شكست نور مى نويسد: هر گاه نور با جسم غليظ ترى مصادف شود اين غلظت مانع از حركت نور در جهت اوليه خواهد بود پس در جهتى سير مى كند كه نفوذ در آن سهل تر است مسلماً چون راه سهل ترى را اختيار مى كند زودتر به مقصد مى رسد.۲
 

انباره یا خازن

انباره یا خازن

انباره یا خازن‌ عبارتست از دو صفحهٔ موازی فلزی که در میان آن لایه‌ای از هوا یا عایق قرار دارد. خازن‌ها انرژی الکتریکی را نگهداری می‌کنند و به همراه مقاومت‌ها، در مدارات تایمینگ استفاده می‌شوند. همچنین از خازن‌ها برای صاف کردن سطح تغییرات ولتاژ مستقیم استفاده می‌شود. از خازن‌ها در مدارات به‌عنوان فیلتر هم استفاده می‌شود. زیرا خازن‌ها به راحتی سیگنالهای متناوب AC را عبور می‌دهند ولی مانع عبور سیگنالهای مستقیم DC می‌شوند .

ظرفیت

ظرفیت معیاری برای اندازه گیری توانایی نگهداری انرژی الکتریکی است. ظرفیت زیاد بدین معنی است که خازن قادر به نگهداری انرژی الکتریکی بیشتری است. واحد اندازه گیری ظرفیت فاراد است. 1 فاراد واحد بزرگی است و مشخص کننده ظرفیت بالا می‌باشد. باید گفت که ظرفیت خازن‌ها یک کمیت فیزیکی هست و به ساختمان خازن وابسته است و به مدار و اختلاف پتانسیل بستگی ندارد


بنابراین استفاده از واحدهای کوچک‌تر نیز در خازنها مرسوم است. میکروفاراد µF، نانوفاراد nF و پیکوفاراد pF واحدهای کوچک‌تر فاراد هستند.

µ means 10-6 (millionth), so 1000000µF = 1F

n means 10-9 (thousand-millionth), so 1000nF = 1µF

p means 10-12 (million-millionth), so 1000pF = 1nF

خازن المان الکتریکی است که می‌تواند انرژی الکتریکی را توسط میدان الکترواستاتیکی (بار الکتریکی) در خود ذخیره کند. انواع خازن در مدارهای الکتریکی بکار می‌روند. خازن را با حرف C که ابتدای کلمه capacitor است نمایش می‌دهند. ساختمان داخلی خازن از دو قسمت اصلی تشکیل می‌شود:


الف – صفحات هادی ب – عایق بین هادیها (دی الکتریک) ساختمان خازن هرگاه دو هادی در مقابل هم قرار گرفته و در بین آنها عایقی قرار داده شود، تشکیل خازن می‌دهند. معمولاً صفحات هادی خازن از جنس آلومینیوم، روی و نقره با سطح نسبتاً زیاد بوده و در بین آنها عایقی (دی الکتریک) از جنس هوا، کاغذ، میکا، پلاستیک، سرامیک، اکسید آلومینیوم و اکسید تانتالیوم استفاده می‌شود. هر چه ضریب دی الکتریک یک ماده عایق بزرگ‌تر باشد آن دی الکتریک دارای خاصیت عایقی بهتر است. به عنوان مثال، ضریب دی الکتریک هوا 1 و ضریب دی الکتریک اکسید آلومینیوم 7 می‌باشد. بنابراین خاصیت عایقی اکسید آلومینیوم 7 برابر خاصیت عایقی هوا است. انواع خازن الف- خازنهای ثابت • سرامیکی • خازنهای ورقه‌ای • خازنهای میکا • خازنهای الکترولیتی o آلومینیومی o تانتالیوم

ب- خازنهای متغیر • واریابل • تریمر انواع خازن بر اساس شکل ظاهری آنها 1. مسطح 2. کروی 3. استوانه‌ای انواع خازن بر اساس دی الکتریک آنها 1. خازن کاغذی 2. خازن الکترونیکی 3. خازن سرامیکی 4. خازن متغییر


کاربرد خازنها در مدارات دیجیتال و انالوگ: در مدارات دیجیتال از خازنها به عنوان عنصر ذخیره کننده انرژی استفاده می‌کنند که در یک لحظه شارژ و در لحظه دیگر دشارژ می‌شود ولی در مدارات انالوگ از خازن جهت ایزوله کردن(جداساختن)دو منبع متناوب و مستقیم استفاده می‌شود خازن در برابر ولتاژ متناوب مثل اتصال کوتاه عمل می‌کند و اجازه ورود یا خروج می‌دهد ولی در مقابل ولتاژ مستقیم همانند سد عمل می‌کند و اجازه ورود و یا خارج شدن ولتاژ مستقیم از مدار را به قسمت تحت ایزوله خود نمی‌دهد.


خازن کروی


خازن مسطح (خازن تخت) دو صفحه فلزی موازی که بین آنها عایقی به نام دی الکتریک قرار دارد، مانند (هوا، شیشه). با اتصال صفحات خازن به یک مولد می‌توان خازن را باردار کرد. اختلاف پتانسیل بین دو سر صفحات خازن برابر اختلاف پتانسیل دو سر مولد خواهد بود. ظرفیت خازن (C) نسبت مقدار باری که روی صفحات انباشته می‌شود بر اختلاف پتانسیل دو سر باتری را ظرفیت خازن گویند؛ که مقداری ثابت است.

C = kε0 A/d

C = ظرفیت خازن بر حسب فاراد

Q = بار ذخیره شده برحسب کولن

V = اختلاف پتانسیل دو سر مولد برحسب ولت


ε0 = قابلیت گذر دهی خلا است که برابر است با: 8.85 × 12-10 _ C2/N.m2


k (بدون یکا) = ثابت دی الکتریک است که برای هر ماده‌ای فرق دارد. تقریباً برای هوا و خلأ 1=K است و برای محیطهای دیگر مانند شیشه و روغن 1

ماده گذردهی عایق ماده گذردهی عایق هوا 1.0006 میکا 6-8 کهربا 2.8 پارافین 2.3 سفال (برای مهندسی رادیو)تا 80 کوارتز 4.5 کائوچو 3 آب خالص 81 شیشه 4-7


A = سطح خازن بر حسب m2


d =فاصله بین دو صفه خازن بر حسب m

چند نکته • آزمایش نشان می‌دهد که ظرفیت یک خازن به اندازه بار (q) و به اختلاف پتانسیل دو سر خازن (V) بستگی ندارد بلکه به نسبت q/v بستگی دارد. • بار الکتریکی ذخیره شده در خازن با اختلاف پتانسیل دو سر خازن نسبت مستقیم دارد. یعنی: q a v • ظرفیت خازن با فاصله بین دو صفحه نسبت عکس دارد. یعنی: C a 1/d • ظرفیت خازن با مساحت هر یک از صفحات و جنس دی الکتریک (K )نسبت مستقیم دارد. یعنی: C a A و C a K شارژ یا پر کردن یک خازن وقتی که یک خازن بی بار را به دو سر یک باتری وصل کنیم؛ الکترونها در مدار جاری می‌شوند. بدین ترتیب یکی از صفحات بار (+) و صفحه دیگر بار (-) پیدا می‌کند. آن صفحه‌ای که به قطب مثبت باتری وصل شده؛ بار مثبت و صفحه دیگر بار منفی پیدا می‌کند. خازن پس از ذخیره کردن مقدار معینی از بار الکتریکی پر می‌شود. یعنی با توجه به اینکه کلید همچنان بسته است؛ ولی جریانی از مدار عبور نمی‌کند و در واقع جریان به صفر می‌رسد. یعنی به محض اینکه یک خازن خالی بدون بار را در یک مدار به مولد متصل کردیم؛ پس از مدتی کوتاه عقربه گالوانومتر دوباره روی صفر بر می‌گردد. یعنی دیگر جریانی از مدار عبور نمی‌کند. در این حالت می‌گوییم خازن پرشده است. دشارژ یا تخلیه یک خازن ابتدا خازنی را که پر است در نظر می‌گیریم. دو سر خازن را توسط یک سیم به همدیگر وصل می‌کنیم. در این حالت برای مدت کوتاهی جریانی در مدار برقرار می‌شود و این جریان تا زمانی که بار روی صفحات خازن وجود دارد برقرار است. پس از مدت زمانی جریان صفر خواهد شد. یعنی دیگر باری بر روی صفحات خازن وجود ندارد و خازن تخلیه شده است. اگر خازن کاملاً پر شود دیگر جریانی برقرار نمی‌شود و اگر خازن کاملاً تخلیه شود باز هم جریانی برقرار نمی‌شود.

تأثیر ماده دی‌الکتریک در فضای بین دو صفحه موازی یک خازن وقتی که خازنی را به مولدی وصل می‌کنیم؛ یک میدان یکنواخت در داخل خازن بوجود می‌آید. این میدان الکتریکی بر توزیع بارهای الکتریکی اتمی عایقی که در درون صفحات قرار دارد اثر می‌گذارد و باعث می‌شود که دو قطبیهای موجود در عایق طوری شکل گیری کنند؛ که در یک سمت عایق بارهای مثبت و در سمت دیگر آن بارهای منفی تجمّع کنند. توزیع بارهایی که در لبه‌های عایق قرار دارند؛ بر بارهای روی صفحات خازن اثر می‌گذارد. یعنی بارهای منفی روی لبه‌های عایق؛ بارهای مثبت بیشتری را روی صفحات خازن جمع می‌کند؛ و همینطور بارهای مثبت روی لبه‌های عایق بارهای منفی بیشتری را روی صفحات خازن جمع می‌کند. بنابراین با افزایش ثابت دی الکتریک (K) می‌توان بارهای بیشتری را روی خازن جمع کرد و باعث افزایش ظرفیت یک خازن شد. با گذاشتن دی الکتریک در بین صفحات یک خازن ظرفیت آن افزایش می‌یابد. میدان الکتریکی درون خازن تخت در فضای بین صفحات خازن بار دار میدان الکتریکی یکنواختی برقرار می‌شود که جهت آن همواره از صفحه مثبت خازن به سمت صفحه منفی خازن است. اندازه میدان همواره یک عدد ثابت می‌باشد.

E=V/d


E: میدان الکتریکی

V: اختلاف پتانسیل دو سر خازن

d: فاصله بین دو صفحه خازن


میدان الکتریکی با اختلاف پتانسیل دو سر خازن نسبت مستقیم و با فاصله بین صفحات خازن نسبت عکس دارد. به هم بستن خازنها خازنها در مدار به دو صورت بسته می‌شوند: 1. موازی 2. متوالی (سری) بستن خازنها به روش موازی در بستن به روش موازی بین خازنها دو نقطه اشتراک وجود دارد. در این نوع روش:

اختلاف پتانسیل برای همة خازنها یکی است. • بار ذخیره شده در کل مدار برابر است با مجموع بارهای ذخیره شده در هریک از خازنها. ظرفیت معادل در حالت موازی مولد V = V1 = V2 = V3

بار کل Q = Q1 + Q2 + Q3

CV = C1V1 + C2V2 + C3V3

ظرفیت کل : C = C1 + C2 + C3

اندیسها مربوط به خازنهای 1 ؛ 2 و 3 می‌باشد. هرگاه چند خازن باهم موازی باشند، ظرفیت خازن معادل برابر است با مجموع ظرفیت خازنها.

بستن خازنها بصورت متوالی در بستن به روش متوالی بین خازنها یک نقطه اشتراک وجود دارد و تنها دو صفحه دو طرف مجموعه به مولد بسته شده؛ از مولد بار دریافت می‌کند. صفحات مقابل نیز از طریق القاء بار الکتریکی دریافت می‌کنند. بنابراین اندازه بار الکتریکی روی همه خازنها در این حالت باهم برابر است. در بستن خازنها به طریق متوالی:

بارهای روی صفحات هر خازن یکی است. • اختلاف پتانسیل دو سر مدار برابر است با مجموع اختلاف پتانسیل دو سر هر یک از خازنها. ظرفیت معادل در حالت متوالی:

بار کل Q = Q1 = Q2 = Q3

اختلاف پتانسیل کل V = V1 + V2 + V3

q/C = q1/C1 + q2/C2 + q3/C3

C-1 = 1/C1 + 1/C2 + 1/C3


ظرفیت کل در حالت متوالی، وارون ظرفیت معادل، برابر است با مجموع وارون هریک از خازنها.


انرژی ذخیره شده در خازن پر شدن یک خازن باعث بوجود آمدن بار ذخیره در روی آن می‌شود و این هم باعث می‌شود که انرژی روی صفحات ذخیره گردد. کل کاری که در فرآیند پر شدن خازن انجام می‌شود از طریق محاسبه بدست می‌آید. کاربرد خازن با توجه به اینکه بار الکتریکی در خازن ذخیره می‌شود؛ برای ایجاد میدانهای الکتریکی یکنواخت می‌توان از خازن استفاده کرد. خازنها می‌توانند میدانهای الکتریکی را در حجمهای کوچک نگه دارند؛ به علاوه می‌توان از آنها برای ذخیره کردن انرژی استفاده کرد. خازن در اشکال مختلف ساخته می‌شود.

خازن وسیله‌ای الکتریکی است که در مدارهای الکتریکی اثر خازنی ایجاد می‌کند. اثر خازنی خاصیتی است که سب می‌شود مقداری انرژی الکتریکی در یک میدان الکترواستاتیک ذخیره شود و بعد از مدتی آزاد گردد. به تعبیر دیگر، خازنها المانهایی هستند که می‌توانند مقداری الکتریسیته را به صورت یک میدان الکترواستاتیک در خود ذخیره کنند. همانگونه که یک مخزن آب برای ذخیره کردن مقداری آب مورد استفاده قرار می‌گیرد. خازنها به اشکال گوناگون ساخته می‌شوند و متداولترین آنها خازنهای مسطح هستند.

این نوع خازنها از دو صفحه هادی که بین آنها عایق یا دی الکتریک قرار دارد. صفحات هادی نسبتا بزرگ هستند و در فاصله‌ای بسیار نزدیک به هم قرار می‌گیرند. دی الکتریک انواع مختلفی دارد و با ضریب مخصوصی که نسبت به هوا سنجیده می‌شود، معرفی می‌گردد. این ضریب را ضریب دی الکتریک می‌نامند. خازنها به دو دسته کلی ثابت و متغیر تقسیم بندی می‌شوند. خازنها انواع مختلفی دارند و از لحاظ شکل و اندازه با یک دیگر متفاوت‌اند. بعضی از خازنها از روغن پر شده و بسیار حجیم‌اند. برخی دیگر بسیار کوچک و به اندازه یک دانه عدس می‌باشند. خازنها بر حسب ثابت یا متغیر بودن ظرفیت به دو گروه تقسیم می‌شوند: خازنهای ثابت و خازنهای متغیر.


خازنهای ثابتاین خازنها دارای ظرفیت معینی هستند که در وضعیت معمولی تغییر پیدا نمی‌کنند. خازنهای ثابت را بر اساس نوع ماده دی الکتریک به کار رفته در آنها تقسیم بندی و نام گذاری می‌کنند و از آنها در مصارف مختلف استفاده می‌شود. از جمله این خازنها می‌توان انواع سرامیکی، میکا، ورقه‌ای ( کاغذی و پلاستیکی )، الکترولیتی، روغنی، گازی و نوع خاص فیلم (Film) را نام برد. اگر ماده دی الکتریک طی یک فعالیت شیمیایی تشکیل شده باشد آن را خازن الکترولیتی و در غیر این صورت آن را خازن خشک گویند. خازنهای روغنی و گازی در صنعت برق بیشتر در مدارهای الکتریکی برای راه اندازی و یا اصلاح ضریب قدرت به کار می‌روند. بقیه خازنهای ثابت دارای ویژگیهای خاصی هستند.

خازنهای متغیربه طور کلی با تغییر سه عامل می‌توان ظرفیت خازن را تغیییر داد: "فاصله صفحات" ، "سطح صفحات" و "نوع دی الکتریک". اساس کار خازن متغیر بر مبنای تغییر سطح مشترک صفحات خازن یا تغییر ضخامت دی الکتریک است، ظرفیت یک خازن نسبت مستقیم با سطح مشترک دو صفحه خازن دارد. خازنهای متغیر عموما ازنوع عایق هوا یا پلاستیک هستند. نوعی که به وسیله دسته متحرک (محور) عمل تغییر ظرفیت انجام می‌شود "واریابل" نامند و در نوع دیگر این عمل به وسیله پیچ گوشتی صورت می‌گیرد که به آن "تریمر" گویند. محدوده ظرفیت خازنهای واریابل 10 تا 400 پیکو فاراد و در خازنهای تریمر از 5 تا 30 پیکو فاراد است. از این خازنها در گیرنده‌های رادیویی برای تنظیم فرکانس ایستگاه رادیویی استفاده می‌شود.


خازنهای سرامیکیخازن سرامیکی (Ceramic capacitor) معمولترین خازن غیر الکترولیتی است که در آن دی الکتریک بکار رفته از جنس سرامیک است. ثابت دی الکتریک سرامیک بالا است، از این رو امکان ساخت خازنهای با ظرفیت زیاد در اندازه کوچک را در مقایسه با سایر خازنها بوجود آورده، در نتیجه ولتاژ کار آنها بالا خواهد بود. ظرفیت خازنهای سرامیکی معمولاً بین 5 پیکو فاراد تا 1/0 میکرو فاراد است. این نوع خازن به صورت دیسکی (عدسی) و استوانه‌ای تولید می‌شود و فرکانس کار خازنهای سرامیکی بالای 100 مگاهرتز است. عیب بزرگ این خازنها وابسته بودن ظرفیت آنها به دمای محیط است، زیرا با تغییر دما ظرفیت خازن تغییر می‌کند. از این خازن در مدارهای الکترونیکی، مانند مدارهای مخابراتی و رادیویی استفاده می‌شود.

خازنهای ورقه‌ایدر خازنهای ورقه‌ای از کاغذ و مواد پلاستیکی به سبب انعطاف پذیری آنها، برای دی الکتریک استفاده می‌شود. این گروه از خازنها خود به دو صورت ساخته می‌شوند:

خازنهای کاغذیدی الکتریک این نوع خازن از یک صفحه نازک کاغذ متخلخل تشکیل شده که یک دی الکتریک مناسب درون آن تزریق می‌گردد تا مانع از جذب رطوبت گردد. برای جلوگیری از تبخیر دی الکتریک درون کاغذ، خازن را درون یک قاب محکم و نفوذ ناپذیر قرار می‌دهند. خازنهای کاغذی به علت کوچک بودن ضریب دی الکتریک عایق آنها دارای ابعاد فیزیکی بزرگ هستند، اما از مزایای این خازنها آن است که در ولتاژها و جریانهای زیاد می‌توان از آنها استفاده کرد.

خازنهای پلاستیکیدر این نوع خازن از ورقه‌های نازک پلاستیک برای دی الکتریک استفاده می‌شود. ورقه‌های پلاستیکی همراه با ورقه‌های نازک فلزی (آلومینیومی) به صورت لوله، در درون قاب پلاستیکی بسته بندی می‌شوند. امروزه این نوع خازنها به دلیل داشتن مشخصات خوب در مدارات زیاد به کار می‌روند. این خازنها نسبت به تغییرات دما حساسیت زیادی ندارند، به همین سبب از آنها در مداراتی استفاده می‌کنند که احتیاج به خازنی با ظرفیت ثابت در مقابل حرارت باشد. یکی از انواع دی الکتریکهایی که در این خازنها به کار می‌رود پلی استایرن (Polystyrene) است، از این رو به این خازنها "پلی استر" گفته می‌شود که از جمله رایج‌ترین خازنهای پلاستیکی است. ماکزیمم فرکانس کار خازنهای پلاستیکی حدود یک مگا هرتز است.

خازنهای میکادر این نوع خازن از ورقه‌های نازک میکا در بین صفحات خازن (ورقه‌های فلزی – آلومینیوم) استفاده می‌شود و در پایان، مجموعه در یک محفظه قرار داده می‌شوند تا از اثر رطوبت جلوگیری شود. ظرفیت خازنهای میکا تقریبا بین 01/0 تا 1 میکرو فاراد است. از ویژگیهای اصلی و مهم این خازنها می‌توان داشتن ولتاژ کار بالا، عمر طولانی و کاربرد در مدارات فرکانس بالا را نام برد.


خازنهای الکترولیتیاین نوع خازنها معمولاً در رنج میکرو فاراد هستند. خازنهای الکترولیتی همان خازنهای ثابت هستند، اما اندازه و ظرفیتشان از خازنهای ثابت بزرگتر است. نام دیگر این خازنها، شیمیایی است. علت نامیدن آنها به این نام این است که دی الکتریک این خازنها را به نوعی مواد شیمیایی آغشته می‌کنند که در عمل، حالت یک کاتالیزور را دارا می‌باشند و باعث بالا رفتن ظرفیت خازن می‌شوند. برخلاف خازنهای عدسی، این خازنها دارای قطب یا پایه مثبت و منفی می‌باشند. روی بدنه خازن کنار پایه منفی، علامت – نوشته شده است. مقدار واقعی ظرفیت و ولتاژ قابل تحمل آنها نیز روی بدنه درج شده است .خازنهای الکترولیتی در دو نوع آلومینیومی و تانتالیومی ساخته می‌شوند.

خازن آلومینیومیاین خازن همانند خازنهای ورقه‌ای از دو ورقه آلومینیومی تشکیل شده است. یکی از این ورقه‌ها که لایه اکسید روی آن ایجاد می‌شود "آند" نامیده می‌شود و ورقه آلومینیومی دیگر نقش کاتد را دارد. ساختمان داخلی آن بدین صورت است که دو ورقه آلومینیومی به همراه دو لایه کاغذ متخلخل که در بین آنها قرار دارند هم زمان پیچیده شده و سیمهای اتصال نیز به انتهای ورقه‌های آلومینیومی متصل می‌شوند. پس از پیچیدن ورقه‌ها آن را درون یک الکترولیت مناسب که شکل گیری لایه اکسید را سرعت می‌بخشد غوطه‌ور می‌سازند تا دو لایه کاغذ متخلخل از الکترولیت پر شوند. سپس کل مجموعه را درون یک قاب فلزی قرار داده و با یک پولک پلاستیکی که سیمهای خازن از آن می‌گذرد محکم بسته می‌شود.

خازن تانتالیومدر این نوع خازن به جای آلومینیوم از فلز تانتالیوم استفاده می‌شود زیاد بودن ثابت دی الکتریک اکسید تانتالیوم نسبت به اکسید آلومینیوم (حدودا 3 برابر) سبب می‌شود خازنهای تانتالیومی نسبت به نوع آلومینیومی درحجم مساوی دارای ظرفیت بیشتری باشند. محاسن خازن تانتالیومی نسبت به نوع آلومینیومی بدین قرار است:

ابعاد کوچکتر جریان نشتی کمتر عمر کارکرد طولانی از جمله معایب این نوع خازن در مقایسه با خازنهای آلومینیومی عبارتند از:

خازنهای تانتالیوم گرانتر هستند. نسبت به افزایش ولتاژ اعمال شده در مقابل ولتاژ مجاز آن، همچنین معکوس شدن پلاریته حساس ترند. قابلیت تحمل جریانهای شارژ و دشارژ زیاد را ندارند. خازنهای تانتالیوم دارای محدودیت ظرفیت هستند (حد اکثر تا 330 میکرو فاراد ساخته می‌شوند).

کد رنگی خازن‌ها

در خازن‌های پلیستر برای سالهای زیادی از کدهای رنگی بر روی بدنه آنها استفاده می‌شد. در این کدها سه رنگ اول ظرفیت را نشان می‌دهند و رنگ چهارم تولرانس(درصد خطا) را نشان می‌دهد . برای مثال قهوه‌ای - مشکی - نارنجی به معنی 10000 پیکوفاراد یا 10 نانوفاراد است. خازن‌های پلیستر امروزه به وفور در مدارات الکترونیک مورد استفاده قرار می‌گیرند. این خازنها در برابر حرارت زیاد معیوب می‌شوند و بنابراین هنگام لحیمکاری باید به این نکته توجه داشت.

ترتیب رنگی خازن‌ها به ترتیب از ۰ تا ۹ به صورت زیر است:

سیاه، قهوه ای، قرمز، نارنجی، زرد، سبز، آبی، بنفش، خاکستری، سفید

خازن‌ها با هر ظرفیتی وجود ندارند. بطور مثال خازن‌های 22 میکروفاراد یا 47 میکروفاراد وجود دارند ولی خازن‌های 25 میکروفاراد یا 117 میکروفاراد وجود ندارند. دلیل اینکار چنین است :

فرض کنیم بخواهیم خازن‌ها را با اختلاف ظرفیت ده تا ده تا بسازیم. مثلاً 10 و 20 و 30 و. .. به همین ترتیب. در ابتدا خوب به‌نظر می‌رسد ولی وقتی که به ظرفیت مثلاً 1000 برسیم چه رخ می‌دهد ؟

مثلاً 1000 و 1010 و 1020 و. .. که در اینصورت اختلاف بین خازن 1000 میکروفاراد با 1010 میکروفاراد بسیار کم است و فرقی با هم ندارند پس این مساله معقول به‌نظر نمی‌رسد. برای ساختن یک رنج محسوس از ارزش خازن‌ها، می‌توان برای اندازه ظرفیت از مضارب استاندارد 10 استفاده نمود. مثلاً 7/4 - 47 - 470 و. .. و یا 2/2 - 220 - 2200 و.. .

خازن‌های متغیر

در مدارات تیونینگ رادیویی از این خازن‌ها استفاده می‌شود و به همین دلیل به این خازنها گاهی خازن تیونینگ هم اطلاق می‌شود. ظرفیت این خازن‌ها خیلی کم و در حدود 100 تا 500 پیکوفاراد است و بدلیل ظرفیت پایین در مدارات تایمینگ مورد استفاده قرار نمی‌گیرند.

در مدارات تایمینگ از خازن‌های ثابت استفاده می‌شود و اگر نیاز باشد دوره تناوب را تغییر دهیم، این عمل بکمک مقاومت انجام می‌شود .


خازن‌های تریمر

خازن‌های تریمر خازن‌های متغییر کوچک و با ظرفیت بسیار پایین هستند. ظرفیت این خازن‌ها از حدود 1 تا 100 پیکوفاراد است و بیشتر در تیونرهای مدارات با فرکانس بالا مورد استفاده قرار می‌گیرند . این خازن‌ها معمولاً دارای 3 پایه هستند که نوع 2 پایه عملاً فرقی در مونتاژ ندارد

پرنده گان میدان مغناطیسی زمین را می بینند

قرن‌ها تصور می‌شد پرندگان مهاجر از خورشید، ماه و ستارگان برای یافتن مسیر حرکت و رسیدن به مناطق گرمسیری استفاده می‌کنند؛ اما مطالعه روی سینه‌سرخ‌ها نشان می‌دهد فرایند مهاجرت بسیار‌پیچیده است و میدان مغناطیسی زمین همراه با فعل‌و‌انفعالات شیمیایی در بدن پرندگان که موجب ردیابی طیف سبز-آبی می‌شود، تنها بخشی از این حس ناشناخته را تشکیل می‌دهند.

 

 

به گزارش نیوساینتیست، اولین‌بار در سال‌های دهه ۶۰ میلادی/ ۵۰ شمسی بود که مطالعه روی سینه‌سرخ‌های در قفس، نشان داد با تغییر فصل ناآرام می‌شوند و قفس را همراه با خودشان همیشه به مسیر ثابتی می‌کشانند. اتاق تاریک بود و هانس فروم، تنها عامل تلاش این پرندگان را برای مهاجرت خاصیت مغناطیسى زمین فرض کرد.

 

 او مانند تعدادی از زیست‌شناسان قرن نوزدهم احتمال می‌داد این پرندگان از یک قطب‌نمای داخلی برای مهاجرت استفاده می‌کنند ولی نتوانست این فرضیه را اثبات کند.

نزدیک به ۱۰ سال بعد ولفگانگ ویلستکو، جانورشناس نشان داد اگر سینه‌سرخ‌های درون قفس در معرض میدان مغناطیسی قوی قرار بگیرند، مسیر حرکت را تغییر خواهند داد.

   این جهت‌یابی منحصر به پرندگان نیست، ۴ دهه مطالعات ویلستکو و همسرش در دانشگاه فرانکفورت، آلمان نشان می‌دهد بسیاری از جانداران از سوسک‌ها گرفته تا خفاش‌ها و موش‌ها برای جایجایی از میدان مغناطیسى زمین کمک می‌گیرند.

  اولین نشانه‌ها از وجود گیرنده‌های مغناطیسی در سال ۱۹۷۵ از باکتری‌های بی‌هوازی و ساکن دریا به دست آمد که با کمک بلورهایی حاوی زنجیره آهن که درون سیتوپلاسم آنها وجود داشت، از منطقه حاوی اکسیژن به سمت اعماق حرکت می‌کردند.

  زمانی که زنجیره آهنی این باکتری‌ها تحت اثر میدان مغناطیسی زمین رو به بالا قرار می‌گرفت، قطب‌نمای داخلی آنها می‌دانست که دارند به سمت اعماق دریا حرکت می‌کنند.

  در پرندگان، اولین‌بار محققان این بلورهاى مغناطیسى را در کبوترهاى نامه‌بر کشف کردند. تعداد زیادی گلوله کوچک سرشار از آهن درون پایانه‌هاى عصبى موجود در پوست داخلی منقار بالایی این پرندگان وجود داشت. وجود این ساختارهای آهنی در سینه‌سرخ‌ها، چکاوک و حتی مرغ خانگی که همگی از اجداد مشترکی منشعب شده‌اند نیز اثبات شده است.

  بیوشیمی و رادیکال‌ها

همزمان با تحقیق روی ساختارهای تشکیل‌شده از آهن، محققان به کشف دیگری که مرتبط با نور و اثر نیروی مغناطیسی روی فعل‌و‌انفعالات شیمیایی در بدن بود، دست یافتند.

  تابش نور می‌تواند رادیکال‌های آزاد را ایجاد کند و میدان مغناطیسى قادرست اسپین یا جهت چرخش جفت رادیکال‌ها را تغییر دهد. در نتیجه سرعت فعل‌و‌انفعال‌های شیمیایی که بخشی از آنها را رادیکال‌های آزاد به عهده دارند، تغییر خواهد کرد.

 

تشکیل این جفت الکترون رادیکال به نور نیاز دارد و اولین حدس محققان این بود که باید این فرایند در چشم‌های پرنده صورت بگیرد. از سوی دیگر هیچ ماده شناخته‌شده‌ای در چشم برای این کار وجود نداشت.

   بیش از ۲ دهه طول کشید تا نیاز پرندگان به طیف نوری سبز-آبی برای مهاجرت و وجود Cryptochrome -نوعی گیرنده نوری در گیاهان وجانوران – توانست این معمای پیچیده را حل کند.

  این پروتئین که نقش آن در تنظیم ساعت بیولوژیک بسیاری از جانداران اثبات شده، در واکنش به نور آبی-سبز یکی از الکترون‌هایش را به مولکول کوچکتری به نام FAD انتقال می‌دهد تا این جفت الکترون را ایجاد کند.

   نکته جالب‌توجه اینجاست که این گیرنده تنها در چشم راست سینه‌سرخ‌ها کشف شده و با بستن این چشم می‌توان قدرت رؤیت امواج مغناطیسی و توانایی مهاجرت را از آنها گرفت.

  تحقیقات نشان می‌دهند تشکیل این جفت رادیکال آزاد تنها یک‌هزارم ثانیه طول می‌کشد و همین زمان برای اثر میدان مغناطیسى زمین روی اسپین این جفت کافی است. .

  هنوز نکات مبهم متعددی وجود دارند اما تحقیقات جاری نشان می‌دهند پرندگان مهاجر می‌توانند میدان مغناطیسی زمین را به شکل سایه‌روشن در کنار مناظر اطراف تماشا کنند. سینه‌سرخ‌ها تنها با چشم راستشان این میدان را می‌بینند اما پرندگانی نیز وجود دارند که از هر دو چشم برای مشاهده این میدان استفاده می‌کنند.  

نقشه مغناطیسی مهاجرت

 

  قدرت میدان مغناطیسی زمین در قطب‌ها به حداکثر می‌رسد و در استوا حداقل است. پرندگان می‌توانند در هنگام مهاجرت با استفاده از گیرنده‌های مغناطیسی درون چشم، یک نقشه ذهنی از پستی‌ها و بلندی‌های این جریان ایجاد کنند.

  این نقشه دقیق به خوبی می‌تواند برای پرندگانی که برای بار دوم یا بیشتر مهاجرت می‌کنند حین عبور از مناطق کوهستانی مه گرفته یا شهرهای بزرگ آلوده مورد استفاده قرار بگیرد. پرندگان جوانی که برای اولین‌بار مهاجرت می‌کنند از گیرنده‌های مغناطیسی درون چشم‌ها برای تعیین شدت این میدان استفاده خواهند کرد.

  مطمئنا در طبیعت پرندگان مهاجر از تمامی سرنخ‌های موجود در دنیای پیرامون از میدان مغناطیسى زمین گرفته تا خورشید، ستارگان، بوها، مناظر و حتی صدای برخورد امواج با صخره‌ها استفاده خواهند کرد. مطالعه روی باسترک‌هایی که در شب‌ مهاجرت‌ می‌کنند و تحت اثر میدان مغناطیسی قوی راه را گم کرده‌اند، نشان می‌دهد هر صبح با طلوع آفتاب، انحراف مسیر را تصحیح خواهند کرد.

  بسیاری از جانداران مانند خرچنگ‌ها، لاک‌پشت، انواع ماهی‌ها مانند قزل‌آلا، کوسه‌ها و حتی پستاندارانی مانند خفاش‌ها و موش کور از این حس هفتم برخوردارند اما شیوه هر یک برای درک آن اندکی متفاوت است.

  به عنوان مثال کوسه‌ها از القاى الکترومغناطیسى برای جهت‌یابی و شکار استفاده می‌کنند و در مورد انسان هنوز قطعیتی در مورد وجود یا عدم‌وجود حس هفتم به دست نیامده است.

تحقیقات نشان می‌دهند پرندگان مهاجر دو مکانیزم مجزا برای مسیریابی و تعیین ارتفاع در اختیار دارند. مطابق آزمون‌های عصب‌شناسی انجام‌شده گیرنده‌های مغناطیسی تعبیه شده بالای منقار این پرندگان بیشتر به شدت میدان مغناطیسی حساسیت دارند و گیرنده‌های درون چشم وظیفه مسیریابی را به عهده خواهند داشت.

پدر فیزیک ایران

پروفسور سید محمود حسابی‌، در سال ‌ 1281 (ه.ش)، از پدر و مادری‌ تفرشی‌، در تهـــران‌ زاده‌ شــــدند. پس‌ از سپری ‌نمودن‌ چهار سال‌، از دوران...

استاد با سه نسل کار و تلاش خستگی ناپذیر به تربیت هفت نسل استاد و دانشجو پرداختند که بسیاری از آنها از اساتید بنام دانشگاههای ایران و پیشرفته ترین مراکز علمی جهان هستند.

خلاصه  یی اززندگی استاد دکتر سید محمود حسابی، بنیان‏گذار دانشگاه، و بسیاری از مراکز علمی، آموزشی، صنعتی، فرهنگی و پژوهشی کشورمان

 

 


پروفسور سید محمود حسابی‌، در سال ‌ 1281 (ه.ش)، از پدر و مادری‌ تفرشی‌، در تهران‌ زاده‌ شدند. پس‌ از سپری ‌نمودن‌ چهار سال‌، از دوران‌ كودكی‌ در تهران‌، به‌ همراه‌ خانواده‌ (پدر، مادر و برادر)، عازم‌ شامات‌ گردیدند. در هفت سالگی‌، تحصیلات‌ ابتدایی‌ خود را، در بیروت‌، با تنگدستی‌ و مرارت‌های‌ دور از وطن‌، در مدرسه‌ كشیش‌های‌فرانسوی‌، آغاز كردند، و هم‏زمان‌، توسط‌ مادر فداكار، متدین‌ و فاضله‌ خود (خانم‌ گوهرشاد حسابی)، تحت‌ آموزش‌ تعلیمات‌ مذهبی‌ و ادبیات‌ فارسی، قرار گرفتند. استاد، قرآن‌ كریم‌ را، حفظ‌ و به‌ آن‌ اعتقادی‌ ژرف‌ داشتن. دیوان‌حافظ‌ را، نیز از بر داشته‌، و به‌ بوستان‌ و گلستان‌ سعدی، شاهنامه‌ فردوسی‌، مثنوی‌ مولوی‌، منشآت‌ قائم‌ مقام‌، اشراف‌كامل‌ داشتند.
شروع‌ تحصیلات‌ متوسطه‌ ایشان‌، مصادف‌ با آغاز جنگ‌ جهانی‌ اول‌، و تعطیلی‌ مدارس‌ فرانسوی‌ زبان ‌بیروت‌ بود. از این‌ رو، پس‌ از دو سال‌ تحصیل‌، در منزل‌، برای‌ ادامه‌، به‌ كالج‌ آمریكایی‌ بیروت‌ رفتند، و در سن‌ هفده‌سالگی‌، لیسانس‌ ادبیات‌، در نوزده‌ سالگی‌ لیسانس‌ بیولوژی‌، و پس‌ از آن‌، مدرك‌ مهندسی‌ راه‌ و ساختمان‌ را، اخذ نمودند. در آن‌ زمان‌، با نقشه‌كشی‌ و راه‏سازی‌، به‌ امرار معاش‌ خانواده‌، کمك‌ می‌كردند. استاد، همچنین‌، در رشته‌های‌ پزشكی‌، ریاضیات‌ و ستاره‌شناسی‌، به‌ تحصیلات‌ آكادمیك‌ پرداختند. شركت‌ راه‏سازی‌ فرانسوی‌، كه ‌استاد در آن‌، مشغول‌ به كار بودند، به پاس‌ قدردانی‌ از زحماتشان‌، ایشان‌ را، برای‌ ادامه‌ تحصیل‌، به‌ كشور فرانسه‌ اعزام‌كرد، و بدین‌ ترتیب، در سال‌ 1924 (م) به‌ مدرسه‌ عالی‌ برق‌ پاریس‌ وارد، و در سال ‌ 1925 (م) فارغ‌التحصیل‌ شدند. هم‏زمان‌ با تحصیل‌ در رشته‌ معدن‌، در راه‌آهن‌ برقی‌ فرانسه‌، مشغول‌ به‌ كار گردیدند، و پس‌ از پایان‌ تحصیل‌ در این ‌رشته، كار خود را، در معادن‌ آهن‌ شمال‌ فرانسه‌، ومعادن‌ زغال‌ سنگ‌ ایالت‌ «سار» آغاز كردند. سپس، به دلیل‌ وجود روحیه‌ علمی‌، به‌ تحصیل‌ و تحقیق‌، در دانشگاه‌ سوربن‌، در رشته‌ فیزیك‌ پرداختند، و در سال‌ 1927 (م)، در سن‌ بیست‌ و پنج‌ سالگی، دانش‏نامه‌ دكترای‌ فیزیك‌ خود را با ارایه‌ رساله یی، تحت‌ عنوان‌ «حساسیت‌ سلول‏های ‌فتو الكتریك»، با درجه‌ عالی‌، دریافت‌ كردند.
استاد، با شعر و موسیقی‌ سنتی‌ ایران‌، و موسیقی‌ كلاسیك‌ غرب‌، به‌ خوبی‌ آشنایی‌ داشتند، و در چند رشته‌ ورزشی‌، موفقیت‏هایی‌ كسب‌ نمودند، كه‌ از آن‌ میان‌، می‌توان‌ به‌ دیپلم‌ نجات‌ غریق‌ در رشته‌ شنا، اشاره‌ نمود.
از جمله‌ دست‏آوردهای‌ عمر پربار استاد، و مشاغلی‌ كه‌ در مسند آن‌، خدمات‌ علمی‌ و فرهنگی‌ شایان‌ توجهی‌ ارائه‌ نمودند، می‌توان‌ به‌ چند نمونه‌، اشاره‌ كرد:
ماموریت‌ وزارت‌ راه‌ و ترابری‌ (طرق‌ و شوارع‌ عامه)، برای‌ تهیه‌ اولین‌ نقشه‌برداری‌ علمی‌، فنی‌ و مهندسی‌كشور (تهیه‌ نقشه‌ نوین‌ راه‌ ساحلی‌ سراسری‌ میان‌ بنادر خلیج‌ فارس‌، بندر لنگه‌ به‌ بوشهر) (1306 ه . ش‌)، تأسیس‌ مدرسه‌ مهندسی‌ وزارت‌ راه‌ و تدریس‌ در آن (‌ 1307 ه . ش)، تأسیس‌ دارالمعلمین‌ عالی‌، و تدریس‌ درآن (‌ 1307 ه . ش‌)، ساخت‌ اولین‌ رادیو در كشور (1307 ه . ش‌)، تأسیس‌ دانش‏سـرای‌ عالی‌ و تدریس‌ در آن ‌(1308 ه . ش‌)، ایجاد اولین‌ ایستگاه‌ هواشناسی‌ در ایران (‌ 1310 ه . ش)، نصب‌ و راه‌اندازی‌ اولین‌ دستگاه ‌رادیولوژی‌ در ایران (‌ 1310ه . ش)، تعیین‌ ساعت‌ ایران (‌ 1311 ه . ش)، تأسیس‌ اولین‌ بیمارستان‌ خصوصی‌، در ایران، به نام‌ "بیمارستان‌ گوهرشاد" (به یاد مادر گرامیشان‌) (1312 ه . ش)، مأمور وزارت‌ راه، برای‌ ساخت‌ راه ‌تهران‌ به‌ شمشك‌، جهت‌ معادن‌ ذغال‌ سنگ (‌ 1312 ه . ش)، پیشنهاد و تدوین‌ قانون‌ تأسیس‌ دانشگاه‌ تهران، و تأسیس‌ دانشكده‌ فنی (‌ 1313 ه . ش‌) و ریاست‌ آن‌ دانشكده‌ تا (1315 ه . ش‌) و تدریس‌ در آن‌، تأسیس‌ دانشكده‌ علوم‌، و ریاست‌ آن‌ دانشكده‌ از (1321 تا 1327، و از 1330 تا 1336 ه . ش‌)، و تدریس‌ در گروه‌ فیزیك‌ آن‌ دانشكده‌، تا واپسین‌ روزهای‌ عمر، تأسیس‌ مركز عدسی‌سازی‌- دیدگانی‌- اپتیك‌ كاربردی‌، در دانشكده‌ علوم ‌دانشگاه‌ تهران، ماموریت‌ خلع‌ ید، از شركت‌ نفت‌ انگلیس‌، در دولت‌ دكتر مصدق‌، اولین رییس‌ هیئت‌‏مدیره‌، و مدیرعامل‌ شركت‌ ملی‌ نفت‌ ایران‌، وزیر فرهنگ‌ در دولت‌ دكتر مصدق(‌ 1330 ه . ش)، پایه‌گذاری‌ مدارس‌ عشایری‌، و تأسیس‌ اولین‌ مدرسه‌ عشایری‌ ایران (‌ 1330 ه . ش‌)، مخالفت‌ با طرح‌ قرارداد ننگین‌ كنسرسیوم‌، وكاپیتولاسیون‌ در مجلس‌، مخالفت‌ با عضویت‌ دولت‌ ایران‌، در قرارداد سنتو «پاكت‌ بغداد» در مجلس، پایه‌گذاری ‌مؤسسه‌ ژئوفیزیك‌ دانشگاه‌ تهران (‌1330 ه . ش‌)، پایه‌گذاری‌ مركز تحقیقات، و رأكتور اتمی‌ دانشگاه‌ تهران‌، تأسیس‌ سازمان‌ انرژی‌ اتمی، و عضو هیئت‌ دایمی‌ كمیته‌ بین‌المللی‌ هسته‌ای (‌1330 ، 1349 ه . ش)، تدوین‌ قانون ‌ستاندارد، و تأسیس‌ مؤسسه‌ استاندارد ایران (‌ 1333هـ.ش‌)، تأسیس‌ اولین‌ رصدخانه‌ نوین‌ در ایران، تأسیس‌ اولین‌ مركز مدرن‌ تعقیب‌ ماهواره‌ها، در شیراز (1335 ه . ش‌)، پایه‌گذاری‌ مركز مخابرات‌ اسدآباد همدان (‌ 1338 ه. ش‌)، تشكیل‌ و ریاست‌ كمیته‌ پژوهشی‌ فضای‌ ایران‌، و عضو دایمی‌ كمیته‌ بین‌المللی‌ فضا (1360 ه . ش‌)، تاسیس‌ انجمن ‌موسیقی‌ ایران، مؤسس‌، و عضو پیوسته‌ فرهنگستان‌ زبان‌ ایران‌ از (1349 ه . ش) تا آخرین‌ روزهای‌ فعالیت‌.
فعالیت‌ در دو نسل‌ كاری، و آموزش‌ 7 نسل‌ استاد و دانشجو، از خدمات‌ ارزنده‌ پروفسور حسابی‌، به شمار می‌رود، و در همین‌ راستا، ایشان‌ از سال (‌ 1350 ه . ش) به عنوان‌ استاد ممتاز دانشگاه‌ تهران‌، شناخته‌ شدند.
استاد، به‌ چهار زبان‌ زنده‌ دنیا: فرانسه‌، انگلیسی‌، آلمانی‌ و عربی‌ مسلط‌ بودند، و به‌ زبان‏های‌: سانسكریت‌، لاتین‌، یونانی‌، پهلوی‌، اوستایی‌، تركی‌ و ایتالیایی‌ اشراف‌ داشتند.
دكتر حسابی‌ به‌ ایران‌، فرهنگ‌ و ادب‌ و اعتقادات‌ سنتی‌ و مذهبی‌ این‌ سرزمین‌ عشق‌، می‌ورزیدند، و گذشته‌ از سفر، به‌ كشورهای‌ متعدد عالم‌، به‌ سراسر ایران‌، سفر كرده‌ بودند، و از این مسافرت‏های پربار داخلی‌ و خارجی‌، ‌یادداشت‌ها و سفرنامه‌های‌ بسیاری‌، به جای‌ نهادند.
در زمینه‌ تحقیق‌ علمی‌: 25 مقاله‌، رساله‌ و كتاب‌، از استاد به‌ چاپ‌ رسیده‌ است‌. تئوری‌ « بی‌نهایت‌ بودن‌ ذرات‌» ایشان‌ در میان‌ دانشمندان‌ و فیزیك‏دانان‌ جهان، شناخته‌ شده‌ است‌.
نشان‌ «اوفیسیه‌ دولا لژیون‌ دونور»، و همچنین‌، نشان‌ «كوماندور دولا لژیون‌ دونور»، بزرگترین‌ نشان‏های‌ كشور فرانسه، به‌ ایشان، اهدا گردید.
استاد، تنها شاگرد ایرانی‌ پروفسور اینشتین‌ بوده، و در طول‌ زندگی، با دانشمندان‌ تراز اول‌ جهان‌، نظیر شرودینگر، بورن، فرمی‌، دیراك، بوهر، ... و با فلاسفه‌ و ادبایی‌ همچون‌ آندره‌ژید، برتراند راسل، ... تبادل‌ نظرداشته‌اند. ایشان‌، از سوی‌ جامعه‌ علمی‌ جهان، به‌ عنوان‌ « مرد اول‌ علمی‌ جهان ‌» (1990 م‌) برگزیده‌ شدند ، و در كنگره‌ "شصت‌ سال‌ فیزیك‌ ایران‌" (1366 ه . ش‌) ملقب‌ به‌ "پدر فیزیك‌ ایران‌" گردیدند.
پروفسور حسابی، در 12 شهریور 1371 (ه . ش‌)، در بیمارستان‌ دانشگاه‌ ژنو، به‌ هنگام‌ معالجه‌ قلبی‌، بدرود حیات‌ گفتند.
مقبره‌ استاد، بنا به‌ خواسته‌ ایشان‌، در زادگاه‌ خانوادگی‌، در شهر دانشگاهی‌ تفرش‌، قرار دارد.

بنیاد پروفسور حسابی‌

 

 

 

 

 

 

خدمات

در شرایطی که اروپا مهد رشد سریع فیزیک بود و با استقبال از دانشمندان فیزیک روز، تمامی امکانات خود را به روی پروفسور حسابی باز کرده بود، ایشاندر شرایطی که اروپا مهد رشد سریع فیزیک بود و با استقبال از دانشمندان فیزیک روز، تمامی امکانات خود را به روی پروفسور حسابی باز کرده بود، ایشان برای ادای دین به ایران بازگشتند و منشا خدمات بزرگی شدند که از فهرست بلند آن می توان به تاسیس دانشگاه تهران، دانشکده فنی، دانشکده علوم و بنیان گذاری مدارس عشایری اشاره داشت که هر یک به نوبه خود سهم به سزایی در پیشرفت جامعه داشت. عنوان بخشی از این خدمات، در فهرست زیر آمده است.

تعیین نقشه راه ها در کشور لبنان، 1299 ش (1921-1920 م)

 

 

 
راه سازی در لبنان

 

 

 

 

 

 

 

 

 

 

مهندس راه و ساختمان در اداره راه سوریه، اجرای پروژه بهسازی و راه سازی در شرکت مقاطعه کاری فرانسوی (حما-سوریه) 1302 ش (1923 م)

 

 

 

 

استخدام به عنوان مهندس راه و ساختمان در اداره راه لبنان، 1302 ش (1923 م)

 

 

 

 

شناسایی و کار در معادن ذغال سنگ ناحیه سار فرانسه، 1304 ش (1925 م)

 

 

 

 

کار به عنوان مهندس برق در راه آهن برقی دولتی فرانسه، پاریس، 1304 ش (1925 م)

 

 

 

 

مطالعه علمی در دانشگاه های پرینستن و شیکاگو و انتشار دو مقاله علمی در آمریکا و انگلیس، 1328-1325 ش (1949-1946 م)

 

 

 

 

تهیه صورت جلسات و خلاصه مذاکرات آکادمی ملی علوم، 1326 ش (1947 م)

 

 

 

 

عضو هیئت تحقیقاتی در انستیتوی تحقیقات هسته یی شیکاگو، 1327 ش (1948 م)

 

 

 

 

 

نماینده مردم تهران در مجلس سنا (دوره چهارم)، از 1340-1328 ش (1961-1949 م)

 

 

 

 

مأموریت خلع ید از شرکت نفت انگلیس در دولت دکتر مصدق، 1330 ش (1951 م)

 

 

 

 

اولین رئیس هیئت مدیره و مدیر عامل شرکت ملی نفت ایران در دولت دکتر مصدق، 1330 ش (1951 م)

 

 

 

 

 

وزیر فرهنگ در دولت دکتر مصدق، 1331-1330 ش (1952-1951م)

 

 

 

 

مخالفت با طرح قرارداد ننگین کنسرسیوم در مجلس، 1333 ش (1954 م)

 

 

 

 

تدوین اساسنامه و تأسیس مؤسسه ملی ستاندارد ایران، 1333 ش (1951 م)

 

 

 

 

مخالفت با قرارداد عضویت دولت ایران در سنتو (پاکت بغداد) در مجلس، 1339 ش (1960 م)

 

 

 

 

مخالفت با طرح قانون ننگین کاپیتولاسیون و کنسر سیوم در مجلس و کناره گیری از مجلس به دنبال مخالفت های سیاسی، 1340 ش (1961 م)

 

 

 

 

اولین نماینده دائم ایران، در سازمان بین المللی فضا، سازمان ملل متحد، 1347-1341 ش (1968-1962 م)

 

 

 

 

خریدن زمین در کره مریخ، 1346 ش (1967 م)

 

 

 

 

تدوین آیین نامه کارخانجات نساجی کشور و رساله چگونگی حمایت دولت در رشد این صنعت

 

 

 

 

تدوین آیین نامه، تأسیس، نصب و راه اندازی کارخانجات دخانیات ایران

 

 

 

 

 

بنیان گذاری واحد پژوهشی صنعتی فیاوری خان و مان (پژوهش و صنعت در مکانیک هیدرودینامیک، انرژی های نو و نامحدود)، 1358 ش (1979 م)

 

 

 

 

 

بنیان گذاری واحد پژوهشی صنعتی سغدایی (پژوهش و تحقیق در سیستم های الکترونیک، اپتوالکترونیک، اپتیک فیزیک و سیستم های هوشمند)، سال 1359 ش، (1980م)

 

 

 

 

 

بنیاد پروفسور حسابی (پژوهش و فعالیت های علمی، فرهنگی، ...) سال 1360ش، (1981م)

 

 

 

 

واحد هدایت دانش آموزان و دانش جویان مبتکر، نظریه یی و کاربردی، سال 1361 ش، (1982م)

 

 

 

 

استفاده از انرژی خورشیدی در ایران، 1360 ش (1981 م)

 

 

 

 

ریاست گروه ممالک جهان سوم در کنفرانس بین المللی فضا

تصویر ویژه ازماه

مدارگرد اکتشافی ماه طی دوره ای ۶ ماهه از تصویربرداری، چهره ای متفاوت از ماه را به نمایش گذاشته است که تا کنون آن را ندیده اید.

به گزارش خبرگزاری مهر، این نقشه درخشان با استفاده از هزار و هفتصد تصویر از منطقه ای یکسان از قطب جنوب ماه و توسط دوربین مدارگرد اکتشافی ماه طی دوره ای ۶ ماهه به ثبت رسیده است.

از آنجایی که محور دورانی ماه از شیب ۱٫۵۴ درجه ای برخوردار است برخی از نواحی نزدیک به قطب در آن در تاریکی دائمی قرار گرفته اند در حالی که مناطق دیگر آن در بیشتر اوقات سال در معرض درخشش نور خورشید قرار دارند.

هر یک از تصاویری که مدارگرد اکتشافی ماه در این دوره ۶ ماهه به ثبت رسانده است بر روی نقشه ای از این منطقه قرار گرفته و به تصویری با کد دودوئی تبدیل شده است: در صورتی که زمینه درخشان باشد آن پیکسل از نقشه بر روی یک و در صورت تاریک بودن بر روی صفر تنظیم شده است.

محققان سپس تمامی این تصاویر را بر روی هم جمع کرده و به محاسبه درصد مدت زمانی پرداختند که هر یک از این پیکسلها در این دوره ۶ ماهه در حال درخشیدن بوده اند.

در نقشه نهایی که از این محاسبات دقیق به دست آمده است، بخشهایی که هرگز نوری دریافت نکرده و یا بازتاب نخواهند داد به رنگ سیاه دیده می شوند و در مقابل بخشهایی که همیشه درخشان هستند با رنگ سفید مشخص شده اند. همچنین بخشهایی از ماه که گاه در نور و گاه در سایه قرار دارند نیز در طیفهای مختلفی از رنگ خاکستری به چشم می خورند.

بر اساس گزارش نیوساینتیست، حفره “شکلتون” با وسعتی برابر ۱۹ کیلومتر و عمقی برابر ۴ کیلومتر را می توان در مرکز این نقشه به خوبی مشاهده کرد. مدارگرد اکتشافی ماه به صورت روزانه و سالانه نقشه های مشابهی از دو قطب ماه به ثبت می رساند تا اطلاعات انسان را برای ماموریتهای آتی به کره ماه تکمیل کند.

منبع : خبرگذاری مهر|شبکه فیزیک هوپا

نظریه ریسمان

 

جهان از چه چیزی ساخته شده . . . 

 

  

نظريه‌ي ريسمان

 

جهان از چه چيزي ساخته شده است ؟

اين پرسش چه‌قدر براي شما آشناست ؟ تا کنون چه‌قدر به اين موضوع فکر کرده ايد؟

شايد باور نکنيد اين پرسش ظاهراً ساده بيش ترين زمان ها و خلاق ترين ذهن ها را در طول تاريخ  به خود مشغول کرده است .

نظريه ريسمان آخرين تلاش انسان براي  يافتن پاسخ اين پرسش ساده است.

پيش از آن‌که ببينيم اين نظريه چيست و چه ادعايي دارد خوب است اطلاعاتمان را درمورد ماده مرور کنيم:

علوم راهنمايي يادتان هست؟ آن جا ياد گرفتيم  ماده از اتم ساخته شده است .و اتم يعني تجزيه ناپذير. حتماً يادتان هست که دموکريتوس فيلسوف يوناني اين نظريه را نخستين بار ارائه کرده بود. وقتي بزرگ تر شديم در فيزيک دبيرستان آموختيم که اتم نيز به نوبه خود از سه جزء اصلي تشکيل شده است : پروتون ، نوترون و الکترون .

نوترون ها و پروتون ها در هسته اند ، در حالي که الکترون ها به دور هسته مي چرخند. اما اين روند تا کجا ادامه خواهد داشت؟

آيا الکترون ها ، پروتون ها و نوترون ها نيز خود از ذرات کوچک تري تشکيل شده اند؟

دانش کنوني ما درباره ي ترکيب زير اتمي جهان در نظريه اي به نام مدل استاندارد ذرات مادي (standard model) خلاصه مي شود.

    اين مدل هم اجزاي بنيادي ماده که جهان از آن ها ساخته شده را توصيف مي کند و هم نيروهايي که از طريق آن ها اين ذرات با يکديگر بر هم کنش دارند.

بر طبق اين مدل الکترون واقعاً يک ذره ي بنيادي است . يعني يکي از ذراتي است که سنگ بناي آفرينش است و خود از اجزاي کوچک تري تشکيل نشده است . اما نوترن ها و پروتن ها ذرات بنيادي نيستند و از ذرات

کوچکتري به نام کوارک تشکيل شده اند. تا جايي که مي دانيم کوارک ها ذرات بنيادي هستند. در واقع طبق مدل استاندارد ذرات مادي 12 ذره بنيادي در طبيعت وجود دارند. يعني 12 نوع ذره که سنگ بناي آفرينش اند. و ماده در طبيعت از آن ها ساخته شده است . 6 تا از اين ذرات بنيادي کوارک هستند . اين کوارک ها نام هاي جالبي دارند:

بالا(up)، پايين(down) ،  عجيب(strange)، عفريت(charm) ، سر(top) و ته(bottom).

براي مثال يک پروتون از 2 کوارک بالا و يک کوارک پايين تشکيل شده است . 6 ذره ي بنيادي ديگر لپتون‌ها هستند. لپتون ها شامل الکترون و دو هم خانواده ي سنگين تر او يعني ميوئون (muon) و تاون (taun) و نيز 3 نوترينو(nutrinos) با طعم هاي مختلف هستند .

اگر‌چه نور ازامواج تشكيل شده است فرضيه‌ي كوانتم پلانك مي‌گويد كه از جهات معيني رفتار نور چنان است كه گويي مجموعه اي از ذرات است: نور تنها به‌صورت بسته‌هاي خاص يا كوانتم‌ گسيل يا جذب مي‌شود. از سوي ديگر، اصل عدم قطعيت هايزنبرگ متضمن آن است كه ذرات از پاره‌اي جهات چونان امواج رفتار مي‌كنند: آن‌ها وضعيت معيني ندارند بلكه با توزيع احتمال معيني در فضا پخش مي‌شوند. نظريه‌ي كوانتم مكانيك برنوع كاملاً جديدي از رياضيات استوار است كه ديگر جهان را به فراخور نياز با مدل مناسب توصيف مي‌كند. بنا براين ميان توصيف يك شي‌ء اعم از نور يا ماده برمبناي مدل ذره‌اي وتوصيف آن برمبناي مدل موجي يك دوگانگي وجود دارد. به اين توصيف دوگانه، دوگانگي موج- ذره گفته مي‌شود.

 در طبيعت 4 نيروي بنيادي وجود دارد: گرانش ، الکترومغناطيسي، نيروي ضعيف هسته اي و نيروي قوي هسته‌اي

 

گرانش و الکترو مغناطيس دور برد هستند و به همين دليل است که اين دو نيرو مدت ها است شناخته شده‌اند. دو نيروي هسته اي کوتاه برد هستند و بنابر اين در مقياس فاصله هايي كه در زندگي روزمره با آن سر وكار داريم عموماً مشاهده نمي شوند.

نيروهاي هسته اي صرفاً در اين قرن شناخته شده اند . نيروي قوي هسته اي همان نيرويي است كه مسئول به هم بستن پروتن ها و نوترن ها براي ساخت هسته اتم است. اما نيروي ضعيف هسته اي  نيرويي  کاملاً  متمايز است و تنها در پديده هايي همچون واپاشي پرتوزا پديدار مي شود. اين نيرو تنها نيرويي است که از قانون تقارن راست و چپ يا پاريته (هم پايه گي )  پيروي نمي‌كند.

 مدل استاندارد ادعا مي کند که براي انتقال اين نيرو ها، ذراتي به نام حامل هاي نيرو بايد وجود داشته باشد .  مثلاً آشناترين اين ذرات فوتون ، ذره اي از نور است که واسط نيروي الکترومغناطيسي است. اين يعني اين که مثلاً يک آهنربا ، يک ميخ آهني را به اين خاطر جذب مي کند که بين آن ها فوتون رد و بدل مي شود. به همين ترتيب گراويتون ذره اي است که نيروي گرانش را حمل مي کند. گراويتون  ذره‌اي است كه تا کنون مشاهده نشده ولي برخي از فيزيکدانان به وجود آن چنان معتقدند که به وجود فوتون.

نيروي قوي را ذراتي به نام گلوئون(glouns) جابه‌جا مي‌كنند و بالاخره نيروي ضعيف توسط 3 ذره به نام هايz  و w+ و w-منتقل مي‌شوند. براي وجودگلوئون‌ها گواه قانع‌كننده‌اي وجود دارد، ذرات w و z نيز در شتاب دهنده ها مستقيما ردگيري شده اند( در واقع مدل استاندارد وجود بوزون هاي  w,zرا پيش از آنکه يافته شوند پيش بيني کرد ).

هم‌چنين اين نظريه وجود ذره اي به نام بوزون هيگز(Higgs Boson) را  پيش بيني کرد‌ه است که هنوز براي کشف آن تلاش مي شود.

تا اين جا همه چيز خوب است اما در واقع دو مشکل اساسي وجود دارد :

يکي از اين مشکلات ظاهراً زيبايي شناختي است و ديگري فني

مشکل زيبايي شناختي حتي براي افراد غير متخصص هم آزاردهنده است . چرا بايد تعداد نيروها و ذرات بنيادي اين قدر زياد باشد؟ مشکل زيبايي شناختي حتي براي افراد غير متخصص هم آزاردهنده است . چرا بايد تعداد نيروها و ذرات بنيادي اين قدر زياد باشد؟ فهرست نام ذرات بنيادي و نيروهايي که در بالا نام برديم را مرور کنيد . الکترون ،ميوئون ، نوترينو ، کوارک ، بوزون w  ، گلوئون ، گراويتون ، و ...

حتماً قبول داريد که اين فهرست نسبتاََ بلند است. مجموعه‌ي‌آن‌ها کم کم شبيه يک باغ وحش  به نظر مي رسد . باغ وحشي از ذرات !!!

اما دليل فني :

مدل استاندارد رفتار همه ذرات  و نيروهاي بنيادي را بدون کم وکاست توصيف مي کند . ولي اين توصيف يک استثناي خيلي مهم دارد : گرانش .

به دلايل فني نيروي گرانش که آشناترين نيرويي است که با آن سر و کار داريم به سختي به طور ميکروسکوپي قابل آزمايش شدن است .

اما چه رازي در گرانش و ذره هم‌بسته‌ي آن گراويتون وجود دارد که آن را از ساير نيروها و ذرات بنيادي متمايز مي‌کند آن‌چنان‌که مدل استاندارد با همه قدرتش از توضيح و توصيف رفتار آن ناتوان است؟ !

مکانیک کوانتوم

 

مکانیک کوانتوم

مکانیک کوانتومی شاخه‌ای بنیادی از فیزیک نظری است که در مقیاس اتمی و زیراتمی به جای مکانیک کلاسیک و الکترومغناطیس کلاسیک به کار می‌رود. مکانیک کوانتومی بنیادی‌تر از مکانیک نیوتنی و الکترومغناطیس کلاسیک است، زیرا در مقیاس‌های اتمی و زیراتمی که این نظریه‌ها با شکست مواجه می‌شوند، می‌تواند با دقت زیادی بسیاری از پدیده‌ها را توصیف کند. مکانیک کوانتومی به همراه نسبیت عام پایه‌های فیزیک جدید را تشکیل می‌دهند.

آشنایی

واژهٔ کوانتوم (به معنی «بسته» یا «دانه») در مکانیک کوانتومی از اینجا می‌آید که این نظریه به بعضی از کمیت‌های فیزیکی (مانند انرژی یک اتم در حال سکون) مقدارهای گسسته‌ای نسبت می‌دهد. بسیاری از شاخه‌های دیگر فیزیک و شیمی از مکانیک کوانتومی به عنوان چهارچوب خود استفاده می‌کنند؛ مانند فیزیک ماده چگال، فیزیک حالت جامد، فیزیک اتمی، فیزیک مولکولی، شیمی محاسباتی، شیمی کوانتومی، فیزیک ذرات بنیادی، و فیزیک هسته‌ای. پایه‌های مکانیک کوانتومی در نیمهٔ اول قرن بیستم به وسیلهٔ ورنر هایزنبرگ، ماکس پلانک، لویی دوبروی، نیلس بور، اروین شرودینگر، ماکس بورن، جان فون نویمان، پاول دیراک، ولفگانگ پاولی و دیگران ساخته شد. بعضی از جنبه‌های بنیادی این نظریه هنوز هم در حال پیشرفت است.

توصیف مکانیک کوانتومی از رفتار سامانه‌های فیزیکی اهمیت زیادی دارد، زیرا در مقیاس اتمی نظریه‌های کلاسیک نمی‌توانند توصیف درستی ارائه دهند. مثلاً، اگر قرار بود مکانیک نیوتنی و الکترومغناطیس کلاسیک بر رفتار یک اتم حاکم باشند، الکترون‌ها به سرعت به سمت هسته اتم حرکت می‌کردند و به آن برمی‌خوردند. ولی در دنیای واقعی الکترون‌ها در نواحی خاصی دور اتم‌ها باقی می‌مانند.

در ساختار مکانیک کوانتومی، حالت هر سیستم در هر لحظه به وسیلهٔ یک تابع موج مختلط توصیف می‌شود (که در مورد الکترون‌های یک اتم گاهی به آن اُربیتال می‌گویند). با این ابزار ریاضی می‌توان احتمال نتایج مختلف در آزمایش‌ها را پیش‌بینی کرد. مثلاً با آن می‌توان احتمال یافتن الکترون را در ناحیهٔ خاصی در اطراف هسته در یک زمان مشخص محاسبه کرد. بر خلاف مکانیک کلاسیک، نمی‌توان هم‌زمان کمیت‌های مزدوج را، مانند مکان و تکانه، با هر دقتی پیش‌بینی کرد. مثلاً می‌توان گفت که الکترون در ناحیهٔ مشخصی از فضا است، ولی مکان دقیق آن را نمی‌توان معلوم کرد. البته معنی این حرف این نیست که الکترون در تمام این ناحیه پخش شده‌است. الکترون در یک ناحیه از فضا یا هست و یا نیست. این ناتوانی در تعیین مکان الکترون را اصل عدم قطعیت هایزنبرگ به طور ریاضی بیان می‌کند.

پدیدهٔ دیگری که منجر به پیدایش مکانیک کوانتومی شد، امواج الکترومغناطیسی مانند نور بودند. ماکس پلانک در سال ۱۹۰۰ هنگام مطالعه بر روی تابش جسم سیاه کشف کرد که انرژی این امواج را می‌توان به شکل بسته‌های کوچکی در نظر گرفت. آلبرت اینشتین از این فکر بهره برد و نشان داد که امواجی مثل نور را می‌توان با ذره‌ای به نام فوتون که انرژی‌اش به بسامدش بستگی دارد توصیف کرد. این نظریه‌ها به دیدگاهی به نام دوگانگی موج-ذره بین ذرات زیراتمی و امواج الکترومغناطیسی منجر شد که در آن ذرات نه موج و نه ذره بودند، بلکه ویژگی‌های هر دو را از خود بروز می‌دادند. مکانیک کوانتومی علاوه بر این که دنیای ذرات بسیار ریز را توصیف می‌کند، برای توضیح برخی از پدیده‌های بزرگ‌مقیاس (ماکروسکوپیک) هم کاربرد دارد، مانند ابررسانایی و ابرشارگی.

مکانیک کوانتومی و فیزیک کلاسیک

نوشتار اصلی: گربه شرودینگر

نوشتار اصلی: آزمایش دوشکاف

نمایش دوگانگی موج-ذره با یک بسته موج فوتونی

اثرات و پدیده‌هایی که در مکانیک کوانتومی و نسبیت پیش‌بینی می‌شوند، فقط برای اجسام بسیار ریز یا در سرعت‌های بسیار بالا آشکار می‌شوند. تقربیاً همهٔ پدیده‌هایی که انسان در زندگی روزمره با آن‌ها سروکار دارد به طور کاملاً دقیقی توسط فیزیک نیونتی قابل پیش‌بینی است.

در مقادیر بسیار کم ماده، یا در انرژی‌های بسیار پایین، مکانیک کوانتومی اثرهایی را پیش‌بینی می‌کند که فیزیک کلاسیک از پیش‌بینی آن ناتوان است. ولی اگر مقدار ماده یا سطح انرژی را افزایش دهیم، به حدی می‌رسیم که می‌توانیم قوانین فیزیک کلاسیک را بدون این که خطای قابل ملاحظه‌ای مرتکب شده باشیم، برای توصیف پدیده‌ها به کار ببریم. به این «حد» که در آن قوانین فیزیک کلاسیک (که معمولاً ساده‌تر هستند) می‌توانند به جای مکانیک کوانتومی پدیده‌ها را به درستی توصیف کنند، حد کلاسیک گفته می‌شود.

کوشش برای نظریهٔ وحدت‌یافته

وقتی می‌خواهیم مکانیک کوانتومی را با نظریهٔ نسبیت عام (که توصیف‌گر فضا-زمان در حضور گرانش است) ترکیب کنیم، به ناسازگاری‌هایی برمی‌خوریم که این کار را ناممکن می‌کند. حل این ناسازگاری‌ها هدف بزرگ فیزیکدانان قرن بیستم و بیست‌ویکم است. فیزیکدانان بزرگی همچون استیون هاوکینگ در راه رسیدن به نظریهٔ وحدت‌یافتهٔ نهایی تلاش می‌کنند؛ نظریه‌ای که نه تنها مدل‌های مختلف فیزیک زیراتمی را یکی کند، بلکه چهار نیروی بنیادی طبیعت -نیروی قوی، نیروی ضعیف، الکترومغناطیس و گرانش- را نیز به شکل جلوه‌های مختلفی از یک نیرو یا پدیده نشان دهد.

مکانیک کوانتومی و زیست‌شناسی

تحقیقات چند موسسه در آمریکا و هلند نشان داده است که بسیاری از فرایندهای زیستی از مکانیک کوانتومی بهره می‌برند. قبلا تصور می‌شد فتوسنتز گیاهان فرایندی بر پایه بیوشیمی است اما تحقیقات پروفسور فلمینگ و همکارانش در دانشگاه برکلی و دانشگاه واشنگتن در سنت لوییس به کشف یک مرحله کلیدی از فرآیند فوتوسنتز منجر شده که بر مکانیک کوانتومی استوار است. همچنین پژوهشهای کریستوفر آلتمن، پژوهشگری از موسسه دانش نانوی کاولی در هلند، حاکی از آن است که نحوه کارکرد سلولهای عصبی خصوصا در مغز که تا مدتها فرایندی بر پایه فعالیتهای الکتریکی و بیوشیمی پنداشته می‌شد و محل بحث ساختارگرایان و ماتریالیستها و زیستشناسها بود، شامل سیستمهای کوانتومی بسیاری است. این پژوهشها نشان می‌دهد که سلول عصبی یک حلزون دریایی می‌تواند از نیروهای کوانتومی برای پردازش اطلاعات استفاده کند. در انسان نیز، فیزیک کوانتومی احتمالا در فرآیند تفکر دخیل است.

منابع

·         ISBN 0-13-124405-1

·         Shankar, R., Principles of Quantum Mechanics, 2nd edition (Plenum, 1994)

·         Sakurai, J. J. (1967). Advanced Quantum Mechanics. Addison Wesley. ISBN 0-201-06710-2.

 

 

گشتاور مغناطیسی

 

گشتاور مغناطیسی

گشتاور مغناطیسی یک آهن‌ربا معیاری از تمایل آن به هم‌خط شدن با یک میدان مغناطیسی است. هم میدان مغناطیسی و هم گشتاور مغناطیسی را می‌توان بردارهایی در نظر گرفت که دارای اندازه و جهت هستند. جهت گشتاور مغناطیسی

از قطب جنوب آهن‌ربا به قطب شمال آن است. میدان مغناطیسی تولید شده به وسیلهٔ یک آهن‌ربا با گشتاور مغناطیسی آن متناسب است. برای نمونه، یک حلقهٔ حامل جریان الکتریکی، یک آهن‌ربای میله‌ای، یک الکترون، یک مولکول، و یک سیّاره همگی دارای گشتاور مغناطیسی هستند. به بیان دقیق‌تر، واژهٔ گشتاور مغناطیسی معمولاً به گشتاور دو قطبی مغناطیسی سیستم، که نخستین جمله از بسط چند جمله‌ای یک میدان مغناطیسی عمومی است، اشاره دارد. جزء دو قطبی میدان مغناطیسی یک جسم، حول جهت گشتاور دو قطبی مغناطیسی آن جسم متقارن است، و متناسب با معکوس توان ۳ فاصله از آن جسم کاهش می‌یابد.


 

دو نوع منبع مغناطیسی

اساساً گشتاور مغناطیسی هر سیستم می‌تواند از دو منبع ناشی شود:

۱) حرکت بارهای الکتریکی، مانند جریان‌های الکتریکی، و ۲) مغناطیسی بودن   ذاتی ذرات پایه‌ای، مانند الکترون‌ها سهم منابعی از نوع نخست را می‌توان با   دانستن توزیع همهٔ جریان‌ها (یا، به طور معادل، همهٔ بارهای الکتریکی و سرعت  ‌های آنها) در درون سیستم، با استفاده از فرمول‌های ذیل به دست آورد. از طرف دیگر، اندازهٔ گشتاور مغناطیسی ذاتی هر ذرهٔ پایه، عددی ثابت است که معمولاً به صورت تجربی و با دقت بالا اندازه‌گیری می‌شود. برای نمونه، گشتاور مغناطیسی    هر الکترون بر طبق اندازه‌گیری برابر با -۹٫۲۸۴۷۶۴×۱۰-۲۴ J/T است. جهت گشتاور مغناطیسی هر ذرّهٔ پایه کاملاً با جهت چرخش آن ذره به دور خود تعیین می‌شود (علامت منفی مقدار ذکر شده، نشان می‌دهد که گشتاور مغناطیسی هر الکترون، ضدّ موازی چرخش آن به دور خود است). گشتاور مغناطیسی خالص هر سیستم، جمع برداری سهم‌های یکی از/هر دو نوع منابع است. برای مثال، گشتاور مغناطیسی یک اتم هیدروژن-۱ ( سبک‌ترین ایزوتوپ هیدروژن، که از یک پروتون و یک الکترون تشکیل شده‌است)  برابر جمع برداری این اجزا است: ۱) گشتاور ذاتی الکترون، ۲) حرکت اوربیتی الکترون  حول پروتون، و ۳) گشتاور ذاتی پروتون. به شیوه‌ای مشابه، گشتاور مغناطیسی یک آهن‌ربای میله‌ای برابر جمع گشتاورهای مغناطیسی ذاتی و اوربیتی الکترون‌های "مجزاً ی مادهٔ مغناطیسی است.

 مغناطیس و گشتاور زاویه‌ای

بین گشتاور زاویه‌ای و مغناطیس، رابطه‌ای نزدیک وجود دارد که در مقیاس ماکروسکوپیک به وسیلهٔ «اثر اینشتین-دهاس» ، یا «دوران بر اثر مغناطیسی  شدن»، و معکوس آن، «اثر بارنت» یا «مغناطیسی شدن بر اثر دوران» بیان   می‌شود. در مقیاس‌های اتمی و زیر اتمی، رابطه به وسیلهٔ نسبت گشتاور مغناطیسی به  گشتاور زاویه‌ای، «نسبت ژیرومغناطیسی» بیان می‌شود.

گشتاور مغناطیسی کویل‌های دایره‌ای

گشتاور مغناطیسی یک حلقهٔ حامل جریان به مساحت حلقه و جریان آن بستگی دارد. برای مثال، اندازهٔ گشتاور مغناطیسی برای یک کویل دایره‌ای تک دور دارای شعاع cm ۵ که جریان A ۱ را حمل می‌کند به این صورت به دست می‌آید:

     :\pi\times (0.05 \ \mathrm{m})^2\times(1\;\mathrm{A})\approx 0.008\;\mathrm{A}\cdot\mathrm{m}^2=0.008\;\mathrm{J/T}\;.

بردار این گشتاور در راستای عمود بر صفحهٔ حلقه‌است و جهت آن با استفاده از  قانون دست راست تعیین می‌شود. دانستن مقدار گشتاور مغناطیسی حلقه  می‌تواند برای ثابت کردن این حقایق مورد استفاده قرار گیرد: در فواصل ،R ، بسیار بزرگ‌تر از شعاع حلقه، r=0.05 m، میدان مغناطیسی حلقه به این صورت کم می‌شود:

   :(10^{-7}\;\mathrm{T}\cdot\mathrm{m/A})\times 2\times\frac{0.008\;\mathrm{A}\cdot\mathrm{m}^2}{R^3}\approx \frac{1.6\times 10^{-9}\;\mathrm{T}\cdot\mathrm{m}^3}{R^3}  
و
 :-(10^{-7}\;\mathrm{T}\cdot\mathrm{m/A})\times \frac{0.008\;\mathrm{A}\cdot\mathrm{m}^2}{R^3}\approx -\frac{0.8\times 10^{-9}\;\mathrm{T}\cdot\mathrm{m}^3}{R^3} 

علامت منفی نشان می‌دهد که جهت میدان در خلاف جهت محور است، و 10^{-7}={\mu_0}/{4 \pi}\,\!, در میدان مغناطیسی 0.5 G زمین (5×10-5 T) عمود بر محور حلقه، حلقه ( و همچنین زمین) گشتاوری را تجربه می‌کنند که اندازهٔ آن بر حسب نیوتون-متر برابر است با:

:\tau\approx (0.008\;\mathrm{J/T})\times (5\times10^{-5}\;\mathrm{T})= 
4\times10^{-7} \ \mathrm{N} \cdot \mathrm{m}.

از وجود این گشتاور می‌توان برای ساخت قطب‌نمای الکتریکی استفاده کرد. اگر این قطب‌نما بتواند محور خود را با میدان زمین موازی کند، مقدار انرژی آزاد شده از سیستم قطب‌نما-زمین، بر حسب ژول، برابر است با:

 :U\approx 0.008\;\mathrm{J/T}\times 5\times10^{-5}\;\mathrm{T}= 
4\times10^{-7} \ \mathrm{J}.

این انرژی می‌تواند به صورت حرارت تلف شود تا بر اصطکاک موجود در سیستم تعلیق قطب‌نما غلبه کند.


 

 گشتاور مغناطیسی سولنوییدها

گشتاور مغناطیسی یک کویل چند دوره (سولنویید) به صورت جمع برداری گشتاورهای تک تک دورها تعیین می‌شود. در حالتی که همهٔ دورها مانند هم باشند (سیم پیچ تک‌لایه)، گشتاور مغناطیسی برابر گشتاور یک دور ضرب در تعداد دورها در سولنویید است. با دانستن مقدار گشتاور مغناطیسی کلی، از آن می‌توان به همان روش مورد استفاده در مورد یک حلقهٔ تک دور، برای محاسبهٔ میدان در نقاط دور، گشتاور، و انرژی ذخیره شده در میدان خارجی استفاده کرد.

 دو قطبی‌های مغناطیسی

میدان مغناطیسی یک دو قطبی مغناطیسی ایده‌آل در شکل ۱ نشان داده شده‌است. اما، آن‌گونه که توضیح داده خواهد شد، به دلیل ارتباط ذاتی گشتاور زاویه‌ای و مغناطیس، دو قطبی‌های مغناطیسی در مواد واقعی، دو قطبی‌های مغناطیسی ایده‌آل نیستند (همان‌گونه که پیش‌تر توضیح داده شد، رابطهٔ بین گشتاور زاویه‌ای و مغناطیس اساس اثر اینشتین-دهاس، دوران بر اثر مغاطیسی شدن، و بر عکس آن، اثر بارنت، مغناطیسی شدن بر اثر دوران، است).

گشتاور مغناطیسی اتم‌ها

برای یک اتم، اسپین‌های الکترون‌های مجزا با هم جمع می‌شوند تا اسپین کلی به دست آید، و گشتاورهای زاویه‌ای اوربیتی هم با هم جمع می‌شوند تا گشتاور زاویه‌ای اوربیتی کلی به دست آید. سپس این دو با استفاده از تزویج گشتاور   زاویه‌ای با هم جمع می‌شوند تا گشتاور زاویه‌ای کلی به دست آید. اندازهٔ گشتاور    دو قطبی اتمی برابر است با:

m_{\mathrm{Atom}} = g_J {\mu}_B \sqrt{J(J+1)}\ ,

که در آن J عدد کوانتومی گشتاور زاویه‌ای کلی، gJ فاکتور لژاندر، و μB پارامتری به   نام «مگنتون بور» است. مولفهٔ گشتاور مغناطیسی در جهت میدان مغناطیسی  برابر است با:

m_{\mathrm{Atom}}(z) = -m g_J {\mu}_B \ ,

که در آن m عدد کوانتومی مغناطیسی یا «عدد کوانتومی استوایی» نامیده می‌شود  و می‌تواند یک از ۲J+۱ مقدار –J، )، ...، (J-۱)، و J را داشته باشد. علامت منفی، از   بار منفی الکترون ناشی می‌شود. به دلیل گشتاور زاویه‌ای، دینامیک دو قطبی مغناطیسی در یک میدان مغناطیسی نسبت به دینامیک دو قطبی الکتریکی در میدان الکتریکی متفاوت است. میدان مغناطیسی گشتاوری به دو قطبی مغناطیسی اعمال می‌کند که تمایل دارد دو قطبی را با میدان هم‌خط کند. اما گشتاور با نرخ تغییر گشتاور زاویه‌ای متناسب است و در نتیجه، «حرکت تقدیمی» رخ می‌دهد: جهت اسپین تغییر می‌کند. این رفتار با معادلهٔ «لاندو- لیف شیتز- گیلبرت» بیان می‌شود:

\frac{1}{\gamma} \frac{d \mathbf{m}}{dt} = \mathbf{m \times H_{eff}} -\frac{\lambda}{\gamma m}\mathbf{m \times }\frac{d\mathbf{m}}{dt} \ ,

در این رابطه، γ نسبت ژیرومغناطیسی، m گشتاور مغناطیسی، λ نسبت میرایی،    و Heff میدان مغناطیسی مؤثر (میدان خارجی به علاوهٔ هر میدان خود به خودی) بوده  و «×» علامت ضرب خارجی برداری است. جملهٔ نخست بیان‌گر حرکت تقدیمی  گشتاور حول میدان مؤثر بوده و جملهٔ دوم یک عبارت میرایی است که به تلفات انرژی ناشی از تعامل با محیط اطراف مربوط است.

 گشتاور مغناطیسی الکترون‌ها

الکترون‌ها و بسیاری از ذرات پایه‌ای دارای گشتاورهای مغناطیسی ذاتی هم هستند. توصیف این گشتاورها نیازمند رهیافتی بر اساس مکانیک کوانتومی بوده و با گشتاور زاویه‌ای ذاتی ذرات رابطه دارد. این گشتاورهای مغناطیسی ذاتی هستند که اثرات ماکروسکوپیکی مغناطیسی، و سایر پدیده‌ها مانند رزونانس پارامغناطیسی الکترون، را تولید می‌کنند. گشتاور مغناطیسی الکترون برابر است با:

 \boldsymbol{\mu}_S=-g_S \mu_B (\boldsymbol{S}/\hbar)

در رابطهٔ بالا، μB مگنتون بور، S اسپین الکترون بوده و فاکتور g الکترون برابر است با: gs=۲ در مکانیک دیراکی، اما اندکی بزرگ تر است، gs=۲٫۰۰۲۳۱۹۳۰۴۳۶ در واقعیت، به دلیل اثرات کوانتومی الکترو دینامیکی

دوباره مهم است که توجه شود که μ ثابتی منفی است که در اسپین ضرب می‌شود، پس گشتاور مغناطیسی هم راستا با اسپین بوده، ولی در جهت مخالف آن است. این امر را می‌توان با این تصویر کلاسیک درک کرد: اگر تصور کنیم که گشتاور زاویه‌ای ناشی از اسپین بر اثر اسپین جرم الکترون حول یک محور ایجاد شود، به دلیل بار منفی الکترون، جریان الکتریکی که این دوران ایجاد می‌کند در جهتی مخالف جاری می‌شود؛ این حلقه‌های جریان، گشتاوری مغناطیسی ایجاد می‌کنند که در راستای اسپین و در جهت مخالف آن است. پس یک پوزیترون ( ذره‌ای مشابه الکترون ولی با بار مثبت) دارای گشتاوری مغناطیسی است که با اسپین موازی است.

گشتاورهای مغناطیسی هسته

سیستم هسته‌ای، یک سیستم فیزیکی پیچیده‌است که متشکل از نوکلئون‌ها، یعنی الکترون‌ها و پروتون‌ها است. از جملهٔ ویژگی‌های مکانیک کوانتومی نوکلئون‌ها، اسپین است. از آنجا که گشتاور الکترومغناطیسی هسته به اسپین نوکلئون‌ها بستگی دارد، می‌توان با اندازه‌گیری گشتاورهای هسته‌ای، و به طور دقیق‌تر،  گشتاور دو قطبی مغناطیسی هسته، به دیدی از این ویژگی‌ها دست پیدا کرد. معمول‌ترین هسته‌ها در «وضعیت زمین» خود دیده می‌شوند، اگر چه هسته‌های برخی از ایزوتوپ‌ها دارای حالت‌های بر انگیختهٔ با عمر بالا هستند. هر وضعیت انرژی هسته یک ایزوتوپ خاص با یک گشتاور دو قطبی مغناطیسی تعریف شده مشخص می‌شود. اندازهٔ این گشتاور عددی ثابت است که اغلب به صورت تجربی تا دقت  بالایی قابل اندازه‌گیری است. این عدد به شدت به سهم هر یک از نوکلئون‌ها  حساس بوده و اندازه‌گیری یا پیش‌بینی مقدار آن می‌تواند اطلاعات مهمی را دربارهٔ محتوای تابع موج هسته‌ای آشکار کند. برای پیش‌بینی مقدار گشتاور دو قطبی مغناطیسی، چند مدل تئوریک و چند روش تجربی وجود دارند که هدف آنها انجام اندازه‌گیری‌ها در هسته به همراه نمودار هسته‌ای است.

 گشتاورهای مغناطیسی مولکول‌ها

هر مولکول دارای اندازهٔ تعریف شده‌ای برای گشتاور مغناطیسی است که به وضعیت انرژی مولکول بستگی دارد. معمولاً گشتاور مغناطیسی کلی یک مولکول ترکیبی از این مؤلفه‌ها است که به ترتیب قدرت آنها آورده شده‌اند: • گشتاورهای مغناطیسی ناشی از اسپین الکترون‌ها (مؤلفهٔ پارامغناطیسی)، در صورت وجود. • حرکت اوربیتی الکترون‌ها، که در آن وضعیت زمین معمولاً با میدان مغناطیسی خارجی متناسب است (مؤلفهٔ دیامغناطیسی). • گشتاور مغناطیسی ترکیبی اسپین‌های هسته‌ای، که به پیکربندی اسپین هسته‌ای بستگی دارد.

نمونه‌هایی از مغناطیس مولکولی

• مولکول اکسیژن، O۲، به دلیل اسپین دو الکترون بیرونی خود، خاصیت پارامغناطیسی شدیدی از خود نشان می‌دهد. • مولکول دی اکسید کربن، CO۲، بیشتر خاصیت دیامغناطیسی، یک گشتاور مغناطیسی بسیار ضعیف‌تر ناشی از حرکت اوربیتی الکترون‌ها که با میدان مغناطیسی خارجی متناسب است، از خود نشان می‌دهد. در مورد نادری که یک ایزوتوپ مغناطیسی، مانند ۱۳C یا ۱۷O،    موجود باشد، مغناطیس هسته‌ای آن در گشتاور مغناطیسی مولکول ظاهر   می‌شود. • مولکول هیدروژن، H۲، در یک میدان مغناطیسی ضعیف ( و یا عدم     وجود میدان مغناطیسی) از خود مغناطیس هسته‌ای نشان می‌دهد، و میتواند از    نظر پیکربندی اسپین هسته‌ای، در حالت para- یا ortho- باشد. • مولکول اکسیژن، O۲، به دلیل اسپین دو الکترون بیرونی خود، خاصیت پارامغناطیسی شدیدی از خود نشان می‌دهد. • مولکول دی اکسید کربن، CO۲، بیشتر خاصیت دیامغناطیسی، یک گشتاور مغناطیسی بسیار ضعیف‌تر ناشی از حرکت اوربیتی الکترون‌ها که با میدان مغناطیسی خارجی متناسب است، از خود نشان می‌دهد. در مورد نادری که یک ایزوتوپ مغناطیسی، مانند ۱۳C یا ۱۷O، موجود باشد، مغناطیس هسته‌ای آن در گشتاور مغناطیسی مولکول ظاهر می‌شود. • مولکول هیدروژن، H۲، در یک میدان مغناطیسی ضعیف ( و یا عدم وجود میدان مغناطیسی) از خود مغناطیس هسته‌ای نشان می‌دهد، و میتواند از نظر پیکربندی اسپین هسته‌ای، در حالت para- یا    ortho- باشد.

فرمول‌های محاسبه و مقادیر گشتاورهای مغناطیسی

حلقهٔ صفحه‌ای در ساده‌ترین حالت، مربوط به یک حلقهٔ صفحه‌ای حامل جریان الکتریکی، گشتاور مغناطیسی به این صورت تعریف می‌شود:

\boldsymbol{\mu}=I \mathbf{a}

که در آن μ گشتاور مغناطیسی بوده، که بر حسب آمپر در متر مربع، یا به شیوهٔ معادل، ژول بر تسلا، بیان می‌شود، a مساحت برداری حلقهٔ جریان است، که بر حسب متر مربع بیان می‌شود (مولفه‌های x، y و z این بردار، به ترتیب برابر مساحت‌های تصاویر حلقه بر روی صفحات yz، zx و xy هستند)، و I جریان حلقه  ( که ثابت فرض شده‌است)، یک اسکالر بیان شده بر حسب آمپر، است. به     صورت توافقی، جهت مساحت بردار با قانون دست راست تعیین می‌شود (با خم کردن انگشتان دست راست در جهت جریان حلقه، هنگامی که کف دست لبهٔ خارجی حلقه را لمس می‌کند، جهت انگشت شست جهت مساحت بردار، و در نتیجه    جهت گشتاور مغناطیسی، را نشان می‌دهد). حلقهٔ بستهٔ دلخواه در   مورد یک   حلقهٔ بستهٔ دلخواه حامل جریان ثابت I، گشتاور با این رابطه به دست می‌آید:

\boldsymbol{\mu}=I\int d \mathbf{a}

در این رابطه، da دیفرانسیل مساحت بردار حلقهٔ جریان است.

توزیع دلخواه جریان

در کلی‌ترین حالت، مربوط به یک توزیع دلخواه جریان در فضا، گشتاور مغناطیسی    این توزیع را می‌توان با استفاده از این رابطه به دست آورد:

\boldsymbol{\mu}=\frac{1}{2}\int\mathbf{r}\times\mathbf{J}\,dV

در این رابطه،:dV = r^2 \sin \theta \,dr\, d \theta\,d\phi , \mathbf{r} دیفرانسیل حجم، r بردار موقعیت      که از مبدأ به مکان دیفرانسیل حجم اشاره می‌کند، و J بردار چگالی جریان در        آن نقطه‌است. از رابطه بالا می‌توان برای محاسبهٔ گشتاور مغناطیسی هر      مجموعه‌ای از بارهای در حال حرکت، مثلاً یک جسم جامد باردار در حال اسپین، استفاده کرد.   برای این کار باید جایگذاری J=ρv انجام شود که در آن، ρ چگالی     بار الکتریکی در  یک   نقطهٔ دلخواه بوده و v سرعت خطی لحظه‌ای آن نقطه‌است. برای نمونه، گشتاور مغناطیسی تولیدی به وسیلهٔ یک بار الکتریکی که در یک    مسیر دایره‌ای      در حال حرکت است برابر است با:

 \boldsymbol{\mu}=\frac{1}{2}\, q\, \mathbf{r}\times\mathbf{v},

که در آن r موقعیت بار q نسبت به مرکز دایره و v سرعت لحظه‌ای بار است.        برای یک بار نقطه‌ای که به صورت آزادانه در یک میدان مغناطیسی خارجی در       حال حرکت است گشتاور مغناطیسی معیاری است از شار مغناطیسی تولید     شده به وسیلهٔ ژیراسیون بار در میدان مغناطیسی. گشتاور در خلاف جهت میدان مغناطیسی است (یعنی دیامغناطیسی است) و اندازهٔ آن برابر انرژی جنبشی    حرکت دورانی تقسیم بر میدان مغناطیسی است. برای یک جسم جامد باردار در  حال اسپین که نسبت چگالی بار به چگالی جرمی برای آن ثابت است، نسبت گشتاور مغناطیسی به گشتاور زاویه‌ای، که به عنوان نسبت ژیرو مغناطیسی هم شناخته می‌شود، برابر نصف نسبت بار به جرم است. این نشان می‌دهد که یک مجموعهٔ دارای جرم بیشتر از بارهایی که با گشتاور زاویه‌ای یکسانی اسپین دارند، نسبت به همتای سبک‌تر خود گشتاور مغناطیسی ضعیف‌تری خواهند داشت. اگر  چه ذرات اتمی را نمی‌توان به صورت دقیق به صورت توزیع‌های بار در حال اسپین       و دارای نسبت بار به جرم یکسان در نظر گرفت، این روند عمومی گه‌گاه در دنیای  اتمی، که گشتاورهای زاویه‌ای ذاتی ذرات، نسبتاً ثابت‌اند، قابل مشاهده‌است:      یک «نیم-رقم» کوچک (اسپین) ضرب در ثابت کاهش یافتهٔ پلانک (h). این پایه‌ای  است برای تعریف واحدهای «مگنتون بور» (با فرض نسبت بار به جرم الکترون) و «مگنتون هسته‌ای» (با فرض نسبت بار به جرم پروتون) برای گشتاور مغناطیسی.

 

چگالی شار مغناطیسی تولید شده به وسیلهٔ گشتاور دو قطبی   مغناطیسی

هر سیستمی که دارای یک گشتاور دو قطبی مغناطیسی μ باشد در فضای در       بر گیرندهٔ خود یک میدان مغناطیسی دو قطبی تولید می‌کند. اگر چه میدان مغناطیسی برآیند تولید شده به وسیلهٔ سیستم می‌تواند دارای اجزای چند      قطبی مرتبهٔ بالاتر هم باشد، این اجزا با فاصله گرفتن از سیستم سریع‌تر افت می‌کنند و بنابراین در فواصل دور از سیستم، تنها مؤلفهٔ دو قطبی است که       مؤلفهٔ غالب میدان مغناطیسی سیستم خواهد بود.

 چگالی شار مغناطیسی ناشی از گشتاور دو قطبی در مبدأ و هم خط با محور z

با انتخاب یک دستگاه مختصات که در آن، گشتاور مغناطیسی در مبدأ و محور z     هم جهت با گشتاور مغناطیسی سیستم، μ، باشد، محاسبهٔ چگالی شار آسان می‌شود. مؤلفه‌های چگالی شار مغناطیسی دو قطبی تولید شده به وسیلهٔ این    دو قطبی در هر نقطهٔ دارای مختصات (x,y,z) را، بر حسب تسلا، می‌توان به این  صورت بیان کرد (مختصات بر حسب متر هستند):

B_x(x,y,z)\,=\,\frac{\mu_0}{4 \pi}\,\,
 3\mu\,\frac{x z}{(x^2+y^2+z^2)^{5/2}}
B_y(x,y,z)\,=\,\frac{\mu_0}{4 \pi}\,\,
 3\mu\,\frac{y z}{(x^2+y^2+z^2)^{5/2}}

 B_z(x,y,z)\,=\,\frac{\mu_0}{4 \pi}\,\,
 3\mu\,\frac{\,z^2\!-\frac{1}{3}\,(x^2+
 y^2+z^2)\,}{(x^2+y^2+z^2)^{5/2}}\,,

و نیز، مؤلفهٔ متعامد:


B_{\perp}(x,y,z)\,=\,\sqrt{B_x^2(x,y,z)+B_y^2(x,y,z)}\,=\,\frac{\mu_0}{4 \pi}\,\,
 3\mu\,\frac{z \sqrt{x^2+y^2}}{(x^2+y^2+z^2)^{5/2}},\,

در این روابط، μ0 ثابت مغناطیسی، π عدد پی، μ اندازهٔ μ، و x، y و z مختصاتی هستند که بر حسب اینچ اندازه‌گیری می‌شوند. چگالی شار مغناطیسی ناشی

از یک گشتاور مغناطیسی واقع در مبدأ که دارای جهت‌گیری دلخواه است اگر این محدودیت را که گشتاور مغناطیسی، μ، در جهت محور z است در نظر نگیریم، روابطی عمومی‌تر به دست می‌آیند:

B_x(x,y,z)\,=\,\frac{\mu_0}{4 \pi}\,\,\left(\frac{3(mx+ny+pz)x}{(x^2+y^2+z^2)^{5/2}}-\frac{m}{(x^2+y^2+z^2)^{3/2}}\right)
B_y(x,y,z)\,=\,\frac{\mu_0}{4 \pi}\,\,\left(\frac{3(mx+ny+pz)y}{(x^2+y^2+z^2)^{5/2}}-\frac{n}{(x^2+y^2+z^2)^{3/2}}\right)
B_z(x,y,z)\,=\,\frac{\mu_0}{4 \pi}\,\,\left(\frac{3(mx+ny+pz)z}{(x^2+y^2+z^2)^{5/2}}-\frac{p}{(x^2+y^2+z^2)^{3/2}}\right)

در این روابط، (m,n,p) مؤلفه‌های گشتاور مغناطیسی μ، در جهت (x,y,z) هستند. معادلات بالا را می‌توان به صورت برداری به این ترتیب نوشت:

\mathbf{B}(x,y,z)\,=\,\frac{\mu_0}{4 \pi}\,\frac{3\mathbf{r}(\boldsymbol{\mu}\cdot\mathbf{r}) - \boldsymbol{\mu}r^2}{r^5}

هم کرل و هم دیورژانس این میدان برابر صفر هستند. هنگامی که بیش از یک  گشتاور مغناطیسی موجود باشد، میدان مغناطیسی کلی برابر مجموع میدانهای   هر گشتاور مغناطیسی است

 

همجوشی هسته ای


از دیرباز آرزوی بشر دستیابی به منبعی از انرژی بوده که علاوه بر آنکه بتواند مدت مدیدی از آن استفاده کند تولید پسماندهای خطرناک نیز در پی نداشته باشد.اکنون در هزاره سوم میلادی این آرزوی به ظاهر دست نیافتنی کم کم به واقعیت می پیوندد.اکنون بشر خود را آماده می کند تا با ساخت اولین رآکتور گرما هسته ای (همجوشی هسته ای)آرزوی نیاکان خود را تحقق بخشد.سوختی پاک و ارزان به نام هیدروژن,انرژی تولیدی سرشار و پسماندی بسیار پاک به نام هلیوم.
اکنون می پردازیم به واکنشهای گرما هسته ای راهکارهای استفاده از آن.

خورشید و ستارگان:


سالهاست که دانشمندان واکنشی را که در خورشید و ستارگان رخ داده و در آن انرژی تولید می کند کشف کرده اند. این واکنش عبارت است از ترکیب (برخورد) هسته های چهار اتم هیدروژن معمولی و تولید یک هسته اتم هلیوم.اما مشکلی سر راه این نظریه است.
بالا ترین دمایی که در خورشید وجود دارد مربوط به مرکز آن است که برابر 15ضرب در 10 به توان6 می باشد. در حالی که در
ستارگان بزرگتر این دما به 20 ضرب در ده به توان 6 می رسد.به همین خاطر تصور بر این است که آن واکنش معروف ترکیب چهار اتم هیدروژن معمولی وتولید یک اتم هلیم در سایر ستارگان بزرگ نیست که باعث تولید انرژی می شود.بلکه احتمالا چرخه کربن در آنها به کمک آمده و کوره آنها را روشن نگه می دارد.منظور از چرخه کربن آن چرخه ای نیست که روی زمین اتفاق می افتد.بلکه به این صورت است که ابتدا یک اتم هیدروژن معمولی با یک اتم کربنC12ترکیب می شود(همجوشی) و یک اتم نیتروژن 13 به همراه یک واحد پرتو گاما را آزاد می کند. بعد این اتم با یک واپاشی به یک اتم کربن 13 به علاوه یک پوزیترون ویک نوترینو تبدیل می شود.بعد اینC13دوباره با یک اتم هیدروژن ترکیب می شود وN14و یک واحد گاما حاصل می شود.دوباره در اثر ترکیب این نیتروژن با یک هیدروژن معمولی اتمO15و یک واحد گاما تولید می شود و اکسیژن15واپاشی کرده و N15به علاوه یک پوزیترون ویک نوترینو را بوجود می آورد.و دست آخر با ترکیب N15با یک هیدروژن معمولیC12به علاوه یک اتم هلیوم بدست می آید.

 

 

دیدید که در این چرخه C12نه مصرف شد و نه به وجود آمد بلکه فقط نقش کاتالیزگر را داشت.این واکنشها به ترتیب و پشت سر هم انجام می شوند. و واکنش اصلی همان تبدیل چهار اتم هیدروژن به یک اتم هلیوم است. مزیت چرخه کربن این است که سرعت کار را خیلی بالا می برد. ولی اشکالی که دارد این است که در دمای حد اقل20 ضرب در ده به توان6 شروع می شود.بنا بر این احتمال زیادی می رود که در ستاره های بزرگتر چرخه کربن باعث تولید انرژی می شود.

محصور سازی


یک تعریف ساده و پایه ای از همجوشی عبارت است از فرو رفتن هسته های چند اتم سبکتر و تشکیل یک هسته سنگینتر. مثلا واکنش کلی همجوشی که در خورشید رخ می دهد عبارت است از برخورد هسته های چهاراتم هیدروژن وتبدیل آنها به یک اتم هلیوم .
تا اینجا ساده به نظر میرسد ولی مشکلی اساسی سر راه است;می دانید هسته از ذرات ریزی تشکیل شده است که پروتون و نوترون جزءلاینفک آن هستند.نوترون بدون بار وپروتون با بار مثبت که سایربارهای مثبت رابه شدت ازخود می راند. مشکل مشخص شد؟ بله…اگر پروتون ها(هسته های هیدروژن)یکدیگررادفع می کنندچگونه می توان آنهارادرهمجوشی شرکت داد؟
همانطورکه حدس زدید راه حل اساسی آن است که به این پروتون ها آن قدر انرژی بدهیم که انرژی جنبشی آنهابیشتراز نیروی دافعه
کولنی آنهاشود و پروتون ها بتوانند به اندازه کافی به هم نزدیک شوند.حال چگونه این انرژی جنبشی را تولید کنیم؟گرما راه حل خوبیست.در اثر افزایش دما جنب و جوش وبه عبارت دیگرانرژی جنبشی ذرات بیشتر و بیشتر می شود به طوری که تعداد برخوردها و شدت آنها بیشتر و بیشتر می شود.به نظر شما آیا دیگر مشکلی وجود ندارد؟ خیر,مسئله اساسیتری سر راه است.
یک سماور پر از آب را تصور کنید.وقتی سماور را روشن می کنید با این کار به آب درون سماور گرما می دهید(انرژی منتقل می کنید).در اثر این انتقال انرژی دمای آب رفته رفته بالاتر می رود و به عبارتی جنب و جوش مولکول های آب زیاد می شود.در این حالت بین مولکولهای آب برخوردهایی پدید می آید.هر مولکول که از شعله(یا المنت یا هر چیز دیگری)مقداری انرژی دریافت کرده است آنقدر جنب و جوش می کند تا بالاخره (به علت محدود بودن محیط سماور و آب)انرژی خود رابه دیگری بدهد.مولکول بعدی نیز به نوبه خود همین عمل را انجام میدهد. بدین ترتیب رفته رفته انرژی منبع گرما در تمام آب پخش می شود و دمای آب بالا می رود. خوب یک سوال: آیا وقتی بدنه سماور را لمس می کنیم هیچ گرمایی حس نمی کنیم؟…بله حس می کنیم.دلیلش هم که روشن است.برخورد مولکول های پر انرژی آب با بدنه سماور و انتقال انرژی خود به آن.هدف ما از روشن کردن سماور گرم کردن آب بود نه سماور. امیدوارم تا اینجا پاسخ اولین مشکل اساسی بر سر راه همجوشی را دریافت کرده باشید.بله اگر اگر با صرف هزینه و زحمت بالا سوخت را به دمایی معادل میلیون ها درجه
کلوین برسانیم آیا این اتم ها آنقدر صبر خواهند کرد تا با دیگر اتمها وارد واکنش شوند یا در اولین فرصت انرژی بالای خود را به دیواره داده وآن را نابود می کند؟(...شما بودید چه می کردید؟؟؟...). بنابر این نیاز به محصور سازی داریم;یعنی باید به طریقی اجازه ندهیم که این گرما به دیواره منتقل شود.

رسیدن به دمای بالا:


شروع واکنش همجوشی به دمای بسیار بالایی نیازمند است.درست است که دمای پانزده میلیون درجه دمای بسیار بالایست و تصور بوجود آوردنش روی زمین مشکل و کمی هم وحشتناک می باشد ولی معمولا در زندگی روزمره دور و برمان دماهای خیلی بالایی وجود دارند و ما از آنها غافلیم.مثلا وقتی در اثر اتصالی سیمهای برق داخل جعبه تقسیم می سوزد وشما صدای جرقه آنرا می شنوید و پس از بررسی متوجه می شوید که کاملا ذوب شده فقط به خاطر دمای وحشتناکی بوده که آن تو به وجود آمده. شاید باور نکنید ولی این دما به حدود سی-چهل هزار درجه کلوین می رسد. البته این دما برای همجوشی حکم طفل نی سواری را دارد. یا اینکه می توانیم با استفاده از ولتاژهای بسیار بالا قوسهای الکتریکی را از درون لوله های موئین عبور بدهیم.به این ترتیب دمای هوای داخل لوله که اکنون به پلاسما تبدیل شده به نزدیک چند میلیون درجه می رسد.(که باز هم برای همجوشی کم است).یکی از بهترین راهها استفاده از لیزر است. می دانید که لیزرهایی با توانهای بسیار بالا ساخته شده اند.مثلا نوعی از (لیزر)) به نام لیزر نوا(NOVA)می تواند در مدت کوتاهی انرژی ای معادل ده به توان پنج ژول تولید کند. اما بازهم در کنار هر مزیت معایبی هست.مثلا این لیزر تبعا انرژی زیادی مصرف می کند که حتی با صرف نظر از آن مشکل دیگری هست که می گوید اگر انرژی تولیدی لیزر در آن مدت کوتاه باید تحویل داده بشود پس برای برقرار ماندن معیار لاوسن (حالا که مدت زمان محصور سازی پایین آمده)باید چگالی بالاتر برود.که در این مورد از تراکم و چگالی جامد هم بالاتر می رود.

انواع واکنشها:


برای بهینه سازی کار رآکتورهای همجوشی و افزایش توان خروجی آنها راههای متعددی وجود دارد.یکی از این راهها انتخاب نوع واکنشی است که قرار است در رآکتور انجام بشود.
واکنش زیر نوعی از واکنش همجوشی بصورتی است که در آن دو هسته سبک با یکدیگر واکنش داده و یک هسته سنگین تر را بوجود میاورند. یعنی حاصل ترکیب دو هسته
دوتریم و تولید یک هسته ترتیم به علاوه یک هسته هیدروژن معمولی است.این واکنش انرژی ده می باشد.چون تفاوت انرژی بستگی هسته سنگین تر وهسته های سبکتر مقداری منفیست.
در این واکنش مقدار انرژی ای تولیدی برابرMeV4می باشد.
قبلا گفته شد که باید برای انجام همجوشی هسته ها به اندازه کافی به هم نزدیک بشوند. این مقدار کافی حدودا معادل 3fm می باشد. چون در این فاصله ها
انرژی پتانسیل الکتروستاتیکی دو دوترون در حدود MeV0.5 هست پس می توانیم با این مقدار انرژی دادن به یکی از دوترونها دافعه کولنی بین دوترونها ر شکسته و واکنش را شروع کنیم که بعد از انجام مقدارMeV4.5تولید می شود.( MeV0.5 انرژی جنبشی به علاوه 4MeVانرژی آزاد شده(
همانطور که می بینید بهترین گزینه واکنش سوم می باشد:


می توانیم رآکتور خود را طوری طراحی کنیم که دور دیواره بیرونی آن لیتیم مایع تحت فشار جریان داشته باشد.این لیتیم مایع گرمای تولیدی اضافی را از واکنش گرفته و به آب منتقل می کند و با تبدیل آن به بخار باعث می شود که توربین و ژنراتور به حرکت درآیند و برق تولید بشود.

اما چرا لیتیم؟


قبلا دیدید که مقرون به صرفه ترین واکنش در راکتور همجوشی واکنش دوتریم . ترتیم است.در این واکنش دیدید که یک نوترون پر انرژی تولید می شد.این مساله یعنی نوترون زایی می تواند سبب تضعیف بخشهایی از رآکتور شود.از طرفی برای محیط زیست و مخصوصا سلامتی کسانی که در اطراف رآکتور فعالیت می کنند بسیار مضر است.اما اگر لیتیم را به عنوان خنک کننده داشته باشیم این جریان لیتیم همچنین نقش مهم کند کنندگی را بازی خواهد کرد.به این صورت که با نوترون اضافی تولید شده در واکنش ترکیب شده و سوخت گران قیمت و بسیار کمیاب رآکتور رو که همان ترتیم است تولید می کند.واکنش دقیق آن به شکل زیر است.البته در این مورد باید ضخامت لیتیم مایع در جریان حداقل یک متر باشد.

اورانیوم

ویگی‌های کلی
نام, نماد, عدد اورانیم, U, 92
تلفظ به انگلیسی /jʊˈrniəm/
yoo-RAY-nee-əm
نام گروهی برای عناصر مشابه آکتینیدها
گروه, تناوب, بلوک [[عنصر گروه |]], ۷, f
جرم اتمی استاندارد 238.02891g·mol−1
آرایش الکترونی [Rn] 5f3 6d1 7s2
الکترون به لایه 2, 8, 18, 32, 21, 9, 2 (Image)
ویژگ‌های فیزیکی
حالت جامد
چگالی (نزدیک به r.t.) 19.1 g·cm−3
چگالی مایع در m.p. 17.3 g·cm−3
نقطه ذوب 1405.3 K, 1132.2 °C, 2070 °F
نقطه جوش 4404 K, 4131 °C, 7468 °F
گرمای هم‌جوشی 9.14 kJ·mol−1
گرمای تبخیر 417.1 kJ·mol−1
ظرفیت گرمایی ویژه (25 °C) 27.665 J·mol−1·K−1
فشار بخار
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 2325 2564 2859 3234 3727 4402
ویژگی‌های اتمی
وضعیت اکسید شدن 6, 5, 4, 3[۱]
(weakly
basic oxide)
الکترونگانیوی 1.38 (Pauling scale)
انرژی‌های یونیزه شدن 1st: 597.6 kJ·mol−1
2nd: 1420 kJ·mol−1
شعاع اتمی 156 pm
شعاع کوالانسی 196±7 pm
شعاع واندروالانسی 186 pm
متفرقه
ساختار کریستالی orthorhombic
مغناطیس paramagnetic
مقاومت الکتریکی (0 °C) 0.280 µΩ·m
رسانایی گرمایی (300 K) 27.5 W·m−1·K−1
انبساط گرمایی (25 °C) 13.9 µm·m−1·K−1
سرعت صوت (سیم نازک) (20 °C) 3155 m/s
مدول یانگ 208 GPa
مدول شیر 111 GPa
مدول باک 100 GPa
نسبت پواسون 0.23
عدد کاس 7440-61-1
پایدارترین ایزوتوپ‌ها
مقاله اصلی ایزوتوپ‌های اورانیم
iso NA نیمه عمر DM DE (MeV) DP
232U syn 68.9 y SF
α 5.414 228Th
233U syn 159,200 y SF 197.93[۲]
α 4.909 229Th
234U 0.0054% 245,500 y SF 197.78
α 4.859 230Th
235U 0.7204% 7.038×108 y SF 202.48
α 4.679 231Th
236U trace 2.342×107 y SF 201.82
α 4.572 232Th

الگو:Elementbox isotopes decay3

ادامه نوشته

راکتور هسته ای

دید کلی

راکتورهای هسته‌ای دستگاه‌هایی هستند که در آنها شکافت هسته‌ای کنترل شده رخ می‌دهد. راکتورها برای تولید انرژی الکتریکی و نیز تولید نوترون‌ها بکار می‌روند. اندازه و طرح راکتور بر حسب کار آن متغیر است. فرآیند شکافت که یک نوترون بوسیله یک هسته سنگین (با جرم زیاد) جذب شده و به دنبال آن به دو هسته کوچکتر همراه با آزاد سازی انرژی و چند نوترون دیگر شکافته می‌شود.


تاریخچه

اولین انرژی کنترل شده ناشی از شکافت هسته در دسامبر 1942 بدست آمد. با رهبری فرمی ساخت و راه اندازی یک پیل از آجرهای گرافیتی ، اورانیوم و سوخت اکسید اورانیوم با موفقیت به نتیجه رسید. این پیل هسته‌ای ، در زیر میدان فوتبال دانشگاه شیکاگو ساخته شد و اولین راکتور هسته‌ای فعال بود.


ساختمان راکتور

با وجود تنوع در راکتور‌ها ، تقریبا همه آنها از اجزای یکسانی تشکیل شده‌اند. این اجزا شامل سوخت ، پوشش برای سوخت ، کند کننده نوترونهای حاصله از شکافت ، خنک کننده‌ای برای حمل انرژی حرارتی حاصله از فرآیند شکافت ماده کنترل کننده برای کنترل نمودن میزان شکافت می‌باشد.

سوخت هسته‌ای

سوخت راکتورهای هسته‌ای باید به گونه‌ای باشد که متحمل شکافت حاصله از نوترون بشود. پنج نوکلئید شکافت پذیر وجود دارند که در حال حاضر در راکتورها بکار می‌روند. 232Th ، 233U ، 235U ، 238U ، 239Pu . برخی از این نوکلئیدها برای شکافت حاصله از نوترونهای حرارتی و برخی نیز برای شکافت حاصل از نوترونهای سریع می‌باشند. تفاوت بین سوخت یک خاصیت در دسته‌بندی راکتورها است.

در کنار قابلیت شکافت ، سوخت بکار رفته در راکتور هسته‌ای باید بتواند نیازهای دیگری را نیز تأمین کند. سوخت باید از نظر مکانیکی قوی ، از نظر شیمیایی پایدار و در مقابل تخریب تشعشعی مقاوم باشد، تا تحت تغییرات فیزیکی و شیمیایی محیط راکتور قرار نگیرد.
هدایت حرارتی ماده باید بالا باشد بطوری که بتواند حرارت را خیلی راحت جابجا کند. همچنین امکان بدست آوردن ، ساخت راحت ، هزینه نسبتا پایین و خطرناک نبودن از نظر شیمیایی از دیگر فایده‌های سوخت است.



غلاف سوخت راکتور

سوختهای هسته‌ای مستقیما در داخل راکتور قرار داده نمی‌شوند، بلکه همواره بصورت پوشیده شده مورد استفاده قرار می‌گیرند. پوشش یا غلاف سوخت ، کند کننده و یا خنک کننده از آن جدا می‌سازد. این امر از خوردگی سوخت محافظت کرده و از گسترش محصولات شکافت حاصل از سوخت پرتو دیده به محیط اطراف جلوگیری می‌کند. همچنین این غلاف می‌تواند پشتیبان ساختاری سوخت بوده و در انتقال حرارت به آن کمک کند. ماده غلاف همانند خود سوخت باید دارای خواص خوب حرارتی و مکانیکی بوده و از نظر شیمیایی نسبت به برهمکنش با سوخت و مواد محیط پایدار باشد. همچنین لازم است غلاف دارای سطح مقطع پایینی نسبت به بر همکنشهای هسته‌ای حاصل از نوترون بوده و در مقابل تشعشع مقاوم باشد.

مواد کند کننده نوترون

یک کند کننده ماده‌ای است که برای کند یا حرارتی کردن نوترونهای سریع بکار می‌رود. هسته‌هایی که دارای جرمی نزدیک به جرم نوترون هستند بهترین کند کننده می‌باشند. کند کننده برای آنکه بتواند در راکتور مورد استفاده قرار گیرد بایستی سطح مقطع جذبی پایینی نسبت به نوترون باشد. با توجه به خواص اشاره شده برای کند کننده ، چند ماده هستند که می‌توان از آنها استفاده کرد. هیدروژن ، دوتریم ، بریلیوم و کربن چند نمونه از کند کننده‌ها می‌باشند. از آنجا که بریلیوم سمی است، این ماده خیلی کم به عنوان کند کننده در راکتور مورد استفاده قرار می‌گیرد. همچنین ایزوتوپهای هیدروژن ، به شکل آب و آب سنگین و کربن ، به شکل گرافیت به عنوان مواد کند کننده استفاده می‌شوند.

خنک کننده‌ها

گرمای حاصله از شکافت در محیط راکتور یا باید از سوخت زدوده شود و یا در نهایت این گرما بقدری زیاد شود که میله‌های سوخت را ذوب کند. حرارتی که از سوخت گرفته می‌شود ممکن است در راکتور قدرت برای تولید برق بکار رود. از ویژگیهایی که ماده خنک کننده باید داشته باشد، هدایت حرارتی آن است تا اینکه بتواند در انتقال حرارت مؤثر باشد. همچنین پایداری شیمیایی و سطح مقطع جذب پایین‌تر از نوترون دو خاصیت عمده ماده خنک کننده است. نکته دیگری که باید به آن اشاره شود این است که این ماده نباید در اثر واکنشهای گاما دهنده رادیواکتیو شوند.

از مایعات و گازها به عنوان خنک کننده استفاده شده‌ است، مانند گازهای
دی اکسید کربن و هلیوم. هلیوم ایده‌آل است ولی پر هزینه بوده و تهیه مقادیر زیاد آن مشکل است. خنک کننده‌های مایع شامل آب ، آب سنگین و فلزات مایع هستند. از آنجا که برای جلوگیری از جوشیدن آب فشار زیادی لازم است خنک کننده ایده‌آلی نیست.


مواد کنترل کننده شکافت

برای دستیابی به فرآیند شکافت کنترل شده و یا متوقف کردن یک سیستم شکافت پس از شروع ، لازم است که موادی قابل دسترس باشند که بتوانند نوترونهای اضافی را جذب کنند. مواد جاذب نوترون بر خلاف مواد دیگر مورد استفاده در محیط راکتور باید سطح مقطع جذب بالایی نسبت به نوترون داشته باشند. مواد زیادی وجود دارند که سطح مقطع جذب آنها نسبت به نوترون بالاست، ولی ماده مورد استفاده باید دارای چند خاصیت مکانیکی و شیمیایی باشد که برای این کار مفید واقع شود.

انواع راکتورها

راکتورها بر حسب نوع فرآیند شکافت به راکتورهای حرارتی ، ریع و میانی (واسطه) ، بر حسب مصرف سوخت به راکتورهای سوزاننده ، مبدل و زاینده ، بر حسب نوع سوخت به راکتورهای اورانیوم طبیعی ، راکتورهای اورانیوم غنی شده با 235U (راکتور مخلوطی Be) ، بر حسب خنک کننده به راکتورهای گاز (CO2مایع (آب ، فلز) ، بر حسب فاز سوخت کند کننده‌ها به راکتورهای همگن ، ناهمگن و بالاخره بر حسب کاربرد به راکتورهای قدرت ، تولید نوکلید و تحقیقاتی تقسیم می‌شوند.

کاربردهای راکتورهای هسته‌ای

راکتورها انواع مختلف دارند برخی از آنها در تحقیقات ، بعضی از آنها برای تولید رادیو ایزتوپهای پر انرژی برخی برای راندن کشتیها و برخی برای تولید برق بکار می‌روند.

دوگروه اصلی راکتورهای هسته‌ای بر اساس تقسیم بندی کاربرد آنها. راکتورهای قدرت و راکتورهای تحقیقاتی هستند. راکتورهای قدرت مولد برق بوده و راکتورهای تحقیقاتی برای تحقیقات هسته‌ای پایه ، مطالعات کاربردی تجزیه‌ای و تولید ایزوتوپها مورد استفاده قرار می گیرند.